start to creat 8 from 4000
|
@ -38,6 +38,8 @@ model = utils.SetDevice(Model.Net3Grad335())
|
||||||
# model = utils.SetDevice(Model.Net3())
|
# model = utils.SetDevice(Model.Net3())
|
||||||
|
|
||||||
|
|
||||||
|
layers = model.PrintLayer()
|
||||||
|
layer = 0
|
||||||
|
|
||||||
model = utils.LoadModel(model, CurrentPath+"/checkpoint.pkl")
|
model = utils.LoadModel(model, CurrentPath+"/checkpoint.pkl")
|
||||||
|
|
||||||
|
@ -54,28 +56,34 @@ model = utils.LoadModel(model, CurrentPath+"/checkpoint.pkl")
|
||||||
traindata, testdata = Loader.Cifar10Mono(batchsize, num_workers=0, shuffle=True)
|
traindata, testdata = Loader.Cifar10Mono(batchsize, num_workers=0, shuffle=True)
|
||||||
|
|
||||||
|
|
||||||
def GetSample(netmodel,layer,dataloader,iteration=-1):
|
def GetSample(netmodel,layer,SearchLayer,DataSet,Interation=-1):
|
||||||
netmodel.eval()
|
netmodel.eval()
|
||||||
sample = utils.SetDevice(torch.empty((8,0)))
|
sample = utils.SetDevice(torch.empty((SearchLayer.out_channels,0)))
|
||||||
for batch_idx, (data, target) in enumerate(dataloader):
|
|
||||||
|
layer = layer-1
|
||||||
|
|
||||||
|
# layerout = []
|
||||||
|
# layerint = []
|
||||||
|
# def getnet(self, input, output):
|
||||||
|
# layerout.append(output)
|
||||||
|
# layerint.append(input)
|
||||||
|
# handle = netmodel.features[layer].register_forward_hook(getnet)
|
||||||
|
# netmodel.ForwardLayer(data,layer)
|
||||||
|
# output = layerout[0][:,:,:,:]
|
||||||
|
# handle.remove()
|
||||||
|
|
||||||
|
|
||||||
|
for batch_idx, (data, target) in enumerate(DataSet):
|
||||||
data = utils.SetDevice(data)
|
data = utils.SetDevice(data)
|
||||||
target = utils.SetDevice(target)
|
target = utils.SetDevice(target)
|
||||||
layerout = []
|
output = netmodel.ForwardLayer(data,layer)
|
||||||
layerint = []
|
output = SearchLayer(output)
|
||||||
def getnet(self, input, output):
|
|
||||||
layerout.append(output)
|
|
||||||
layerint.append(input)
|
|
||||||
handle = netmodel.features[layer].register_forward_hook(getnet)
|
|
||||||
netmodel.forwardLayer(data,layer=layer)
|
|
||||||
output = layerout[0][:,:,:,:]
|
|
||||||
|
|
||||||
handle.remove()
|
|
||||||
data.detach()
|
data.detach()
|
||||||
target.detach()
|
target.detach()
|
||||||
|
|
||||||
output = torch.reshape(output.transpose(0,1),(8,-1))
|
output = torch.reshape(output.transpose(0,1),(SearchLayer.out_channels,-1))
|
||||||
sample = torch.cat((sample,output),1)
|
sample = torch.cat((sample,output),1)
|
||||||
if iteration > 0 and batch_idx >= (iteration-1):
|
if Interation > 0 and batch_idx >= (Interation-1):
|
||||||
break
|
break
|
||||||
|
|
||||||
sample_mean=torch.mean(sample,dim=1,keepdim=True)
|
sample_mean=torch.mean(sample,dim=1,keepdim=True)
|
||||||
|
@ -106,45 +114,39 @@ def GetRandomSocre(netmodel,layer,dataloader,iteration=-1):
|
||||||
return np.array(score), newweight
|
return np.array(score), newweight
|
||||||
|
|
||||||
|
|
||||||
|
def UnsuperLearnConvWeight(model, layer, dataloader, NumSearch = 10000, ChannelRatio=1,Interation=10):
|
||||||
|
tl = model.features[layer]
|
||||||
|
newlayer = nn.Conv2d(tl.in_channels, tl.out_channels * ChannelRatio, tl.kernel_size,
|
||||||
|
tl.stride, tl.padding, tl.dilation, tl.groups, tl.bias, tl.padding_mode)
|
||||||
|
newlayer = utils.SetDevice(newlayer)
|
||||||
|
|
||||||
ConvKernelToImage(model, 0, CurrentPath+"image")
|
newchannels = tl.out_channels * ChannelRatio
|
||||||
|
newweightshape = list(newlayer.weight.data.shape)
|
||||||
|
|
||||||
|
minactive = np.empty((0))
|
||||||
|
minweight = np.empty([0,newweightshape[1],newweightshape[2],newweightshape[3]])
|
||||||
|
|
||||||
|
for i in range(NumSearch):
|
||||||
|
newweight = np.random.uniform(-1.0,1.0,newweightshape).astype("float32")
|
||||||
|
newlayer.weight.data=utils.SetDevice(torch.from_numpy(newweight))
|
||||||
|
|
||||||
|
score = GetSample(model, layer, newlayer, dataloader, Interation)
|
||||||
|
|
||||||
|
minactive = np.append(minactive, score)
|
||||||
|
minweight = np.concatenate((minweight, newweight))
|
||||||
|
|
||||||
|
index = minactive.argsort()
|
||||||
|
minactive = minactive[index[0:newchannels]]
|
||||||
|
minweight = minweight[index[0:newchannels]]
|
||||||
|
print("search random :" + str(i))
|
||||||
|
if i % (NumSearch/10) == 0:
|
||||||
|
tl.data=utils.SetDevice(torch.from_numpy(minweight[0:tl.out_channels]))
|
||||||
|
utils.SaveModel(model, CurrentPath+"/checkpoint.pkl")
|
||||||
|
tl.data=utils.SetDevice(torch.from_numpy(minweight[0:tl.out_channels]))
|
||||||
|
|
||||||
|
|
||||||
|
UnsuperLearnConvWeight(model, layer, traindata, NumSearch=100000, ChannelRatio=8, Interation=10)
|
||||||
|
|
||||||
|
ConvKernelToImage(model, layer, CurrentPath+"image")
|
||||||
|
|
||||||
layer = 0
|
|
||||||
|
|
||||||
weightshape = list(model.features[layer].weight.data.shape)
|
|
||||||
channels = weightshape[0]
|
|
||||||
weightshape[0] = 0
|
|
||||||
minactive = np.empty((0))
|
|
||||||
minweight = np.empty(weightshape)
|
|
||||||
|
|
||||||
for i in range(300000):
|
|
||||||
score,weight = GetRandomSocre(model,layer,traindata,iteration=10)
|
|
||||||
|
|
||||||
minactive = np.append(minactive, score)
|
|
||||||
minweight = np.concatenate((minweight, weight))
|
|
||||||
|
|
||||||
index = minactive.argsort()
|
|
||||||
minactive = minactive[index[0:channels]]
|
|
||||||
minweight = minweight[index[0:channels]]
|
|
||||||
|
|
||||||
print("search random :" + str(i))
|
|
||||||
if i % 10000 == 0:
|
|
||||||
utils.SaveModel(model, CurrentPath+"/checkpoint.pkl")
|
|
||||||
|
|
||||||
|
|
||||||
# for i in range(minweight.shape[0]):
|
|
||||||
# a2 = minweight[i].reshape((minweight.shape[2],minweight.shape[3]))
|
|
||||||
# a2min = np.min(a2)
|
|
||||||
# a2max = np.max(a2)
|
|
||||||
# a2 = (a2 - a2min)*255.0/(a2max-a2min)
|
|
||||||
# a2 = a2.astype(int)
|
|
||||||
# cv2.imwrite(CurrentPath+"/image/c"+str(i)+"_"+str(minactive[i])+".png",a2)
|
|
||||||
|
|
||||||
|
|
||||||
model.features[layer].weight.data=utils.SetDevice(torch.from_numpy(minweight))
|
|
||||||
utils.SaveModel(model,CurrentPath+"/checkpoint.pkl")
|
utils.SaveModel(model,CurrentPath+"/checkpoint.pkl")
|
||||||
print("save model sucess")
|
print("save model sucess")
|
||||||
|
|
|
@ -31,6 +31,12 @@ batchsize = 128
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# model = utils.SetDevice(Model.Net535())
|
||||||
|
# model = utils.SetDevice(Model.Net5Grad35())
|
||||||
|
# model = utils.SetDevice(Model.Net31535())
|
||||||
|
# optimizer = optim.Adam(model.parameters(), lr=0.01)
|
||||||
|
|
||||||
|
|
||||||
# traindata, testdata = Loader.MNIST(batchsize, num_workers=4)
|
# traindata, testdata = Loader.MNIST(batchsize, num_workers=4)
|
||||||
# traindata, testdata = Loader.RandomMnist(batchsize, num_workers=4, style="Vertical")
|
# traindata, testdata = Loader.RandomMnist(batchsize, num_workers=4, style="Vertical")
|
||||||
# traindata, testdata = Loader.RandomMnist(batchsize, num_workers=4, style="Horizontal")
|
# traindata, testdata = Loader.RandomMnist(batchsize, num_workers=4, style="Horizontal")
|
||||||
|
@ -39,13 +45,7 @@ batchsize = 128
|
||||||
traindata, testdata = Loader.Cifar10Mono(batchsize, num_workers=4,shuffle=True,trainsize=500)
|
traindata, testdata = Loader.Cifar10Mono(batchsize, num_workers=4,shuffle=True,trainsize=500)
|
||||||
|
|
||||||
|
|
||||||
|
# WebVisual.InitVisdom()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
WebVisual.InitVisdom()
|
|
||||||
window = WebVisual.LineWin()
|
window = WebVisual.LineWin()
|
||||||
lineNoPre = WebVisual.Line("NoPre")
|
lineNoPre = WebVisual.Line("NoPre")
|
||||||
linePretrain = WebVisual.Line("Pretrain")
|
linePretrain = WebVisual.Line("Pretrain")
|
||||||
|
@ -55,42 +55,26 @@ linePretrain = WebVisual.Line("Pretrain")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# model = utils.SetDevice(Model.Net535())
|
|
||||||
# model = utils.SetDevice(Model.Net5Grad35())
|
|
||||||
# model = utils.SetDevice(Model.Net31535())
|
|
||||||
# model = utils.SetDevice(Model.Net3335())
|
# model = utils.SetDevice(Model.Net3335())
|
||||||
model = utils.SetDevice(Model.Net3Grad335())
|
model = utils.SetDevice(Model.Net3Grad335())
|
||||||
|
model = utils.LoadModel(model, CurrentPath+"/checkpoint.pkl")
|
||||||
|
|
||||||
|
|
||||||
# model = utils.LoadModel(model, CurrentPath+"/checkpoint.pkl")
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
optimizer = optim.SGD(model.parameters(), lr=0.1)
|
optimizer = optim.SGD(model.parameters(), lr=0.1)
|
||||||
# optimizer = optim.Adam(model.parameters(), lr=0.01)
|
for i in range(1000):
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
model = utils.LoadModel(model, CurrentPath+"/checkpoint.pkl")
|
|
||||||
for i in range(2000):
|
|
||||||
Train.train(model,traindata,optimizer,epoch=i)
|
Train.train(model,traindata,optimizer,epoch=i)
|
||||||
window.AppendData(linePretrain,Train.test(model,testdata))
|
window.AppendData(linePretrain,Train.test(model,testdata))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
model = utils.SetDevice(Model.Net3335())
|
model = utils.SetDevice(Model.Net3335())
|
||||||
|
model = utils.LoadModel(model, CurrentPath+"/checkpoint.pkl")
|
||||||
|
|
||||||
optimizer = optim.SGD(model.parameters(), lr=0.1)
|
optimizer = optim.SGD(model.parameters(), lr=0.1)
|
||||||
for i in range(2000):
|
for i in range(1000):
|
||||||
Train.train(model, traindata, optimizer, epoch=i)
|
Train.train(model, traindata, optimizer, epoch=i)
|
||||||
window.AppendData(lineNoPre, Train.test(model, testdata))
|
window.AppendData(lineNoPre, Train.test(model, testdata))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# utils.SaveModel(model,CurrentPath+"/checkpointSGDPreTrain.pkl")
|
# utils.SaveModel(model,CurrentPath+"/checkpointSGDPreTrain.pkl")
|
||||||
|
|
Before Width: | Height: | Size: 69 B |
Before Width: | Height: | Size: 69 B |
Before Width: | Height: | Size: 69 B |
Before Width: | Height: | Size: 69 B |
Before Width: | Height: | Size: 69 B |
Before Width: | Height: | Size: 69 B |
Before Width: | Height: | Size: 69 B |
Before Width: | Height: | Size: 69 B |
|
@ -20,7 +20,17 @@ class ModuleBase(nn.Module):
|
||||||
if b != None:
|
if b != None:
|
||||||
self.features[layer].bias.requires_grad = requiregrad
|
self.features[layer].bias.requires_grad = requiregrad
|
||||||
|
|
||||||
def forwardLayer(self, x, layer=0):
|
def ForwardLayer(self, x, layer=0):
|
||||||
|
if layer < 0:
|
||||||
|
return x
|
||||||
layers = self.features[0:layer+1]
|
layers = self.features[0:layer+1]
|
||||||
x = layers(x)
|
x = layers(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
def PrintLayer(self):
|
||||||
|
names = []
|
||||||
|
i = 0
|
||||||
|
for l in self.features:
|
||||||
|
names.append(str(i)+' : '+str(l))
|
||||||
|
i = i+1
|
||||||
|
return names
|
||||||
|
|