Refine line display visdom

This commit is contained in:
colin 2019-09-23 10:02:01 +08:00
parent 7f39f884fc
commit 76c9b7f05e
5 changed files with 27 additions and 57 deletions

View File

@ -28,10 +28,8 @@ from tools import utils, Train, Loader, WebVisual
import EvaluatorUnsuper import EvaluatorUnsuper
batchsize = 128 batchsize = 128
# model = utils.SetDevice(Model.Net5Grad35()) # model = utils.SetDevice(Model.Net5Grad35())
# model = utils.SetDevice(Model.Net31535()) # model = utils.SetDevice(Model.Net31535())
model = utils.SetDevice(Model.Net3Grad335()) model = utils.SetDevice(Model.Net3Grad335())
@ -44,8 +42,6 @@ layer = 0
# traindata, testdata = Loader.MNIST(batchsize) # traindata, testdata = Loader.MNIST(batchsize)
# traindata, testdata = Loader.RandomMnist(batchsize, style="Vertical") # traindata, testdata = Loader.RandomMnist(batchsize, style="Vertical")
# traindata, testdata = Loader.RandomMnist(batchsize, style="Horizontal") # traindata, testdata = Loader.RandomMnist(batchsize, style="Horizontal")
@ -59,24 +55,27 @@ traindata, testdata = Loader.Cifar10Mono(batchsize, num_workers=0, shuffle=True)
# weight = EvaluatorUnsuper.UnsuperLearnSearchWeight(model, layer, traindata, NumSearch=100000, SearchChannelRatio=8, Interation=10) # weight = EvaluatorUnsuper.UnsuperLearnSearchWeight(model, layer, traindata, NumSearch=100000, SearchChannelRatio=8, Interation=10)
# np.save("WeightSearch.npy", weight) # np.save("WeightSearch.npy", weight)
# weight = EvaluatorUnsuper.UnsuperLearnTrainWeight(model, layer, traindata, NumTrain=5000)
# np.save("WeightTrain.npy", weight)
# weight = np.load(CurrentPath+"WeightSearch.npy") # weight = np.load(CurrentPath+"WeightSearch.npy")
# bestweight,index = EvaluatorUnsuper.UnsuperLearnFindBestWeight(model,layer,weight,traindata,128,100000) # bestweight,index = EvaluatorUnsuper.UnsuperLearnFindBestWeight(model,layer,weight,traindata,128,100000)
# np.save(CurrentPath+"bestweightSearch.npy", bestweight) # np.save(CurrentPath+"bestweightSearch.npy", bestweight)
# bestweight = np.load(CurrentPath+"bestweightSearch.npy")
# utils.NumpyToImage(bestweight, CurrentPath+"image") # utils.NumpyToImage(bestweight, CurrentPath+"image")
# EvaluatorUnsuper.SetModelConvWeight(model,layer,bestweight)
# utils.SaveModel(model,CurrentPath+"/checkpointSearch.pkl")
# weight = np.load(CurrentPath+"WeightTrain.npy")
# bestweight, index = EvaluatorUnsuper.UnsuperLearnFindBestWeight(
# model, layer, weight, traindata, databatchs=16, interation=1000000) # weight = EvaluatorUnsuper.UnsuperLearnTrainWeight(model, layer, traindata, NumTrain=5000)
# np.save(CurrentPath+"bestweightTrain.npy", bestweight) # np.save("WeightTrain.npy", weight)
# utils.NumpyToImage(bestweight, CurrentPath+"image") weight = np.load(CurrentPath+"WeightTrain.npy")
bestweight, index = EvaluatorUnsuper.UnsuperLearnFindBestWeight(model, layer, weight, traindata, databatchs=128, interation=1000000)
np.save(CurrentPath+"bestweightTrain.npy", bestweight)
bestweight = np.load(CurrentPath+"bestweightTrain.npy")
utils.NumpyToImage(bestweight, CurrentPath+"image")
# EvaluatorUnsuper.SetModelConvWeight(model,layer,bestweight)
# utils.SaveModel(model,CurrentPath+"/checkpointTrain.pkl")
@ -95,22 +94,6 @@ traindata, testdata = Loader.Cifar10Mono(batchsize, num_workers=0, shuffle=True)
# weight = np.load(CurrentPath+"bestweightSearch.npy")
# EvaluatorUnsuper.SetModelConvWeight(model,layer,weight)
# utils.SaveModel(model,CurrentPath+"/checkpointSearch.pkl")
weight = np.load(CurrentPath+"bestweightTrain.npy")
EvaluatorUnsuper.SetModelConvWeight(model,layer,weight)
utils.SaveModel(model,CurrentPath+"/checkpointTrain.pkl")
# utils.NumpyToImage(weight, CurrentPath+"image") # utils.NumpyToImage(weight, CurrentPath+"image")
# utils.SaveModel(model,CurrentPath+"/checkpoint.pkl") # utils.SaveModel(model,CurrentPath+"/checkpoint.pkl")
print("save model sucess") print("save model sucess")

Binary file not shown.

Before

Width:  |  Height:  |  Size: 413 B

After

Width:  |  Height:  |  Size: 409 B

Binary file not shown.

View File

@ -36,11 +36,8 @@ class Line():
self.size = 0 self.size = 0
self.win = windows self.win = windows
def AppendData(self, y): def AppendData(self, y, x=None):
self.win.AppendData(self, y) self.win.AppendData(self, y, x)
def AppendData(self, x, y):
self.win.AppendData(self, x, y)
class LineWin(): class LineWin():
@ -70,26 +67,16 @@ class LineWin():
) )
return Line(linename, len(y)) return Line(linename, len(y))
def AppendData(self, line, y): def AppendData(self, line, y, x=None):
if not isinstance(y, list):
y = [y] y = [y]
self.viz.line( Y = np.array(y).reshape((-1))
X=np.array(range(line.size, line.size+len(y))), X = []
Y=np.array(y), if x:
win=self.win,
update="append",
name=line.name
)
line.size = line.size + len(y)
def AppendData(self, line, x, y):
if not isinstance(y, list) and not isinstance(y, np.ndarray):
y = [y]
if not isinstance(x, list) and not isinstance(x, np.ndarray):
x = [x] x = [x]
X = np.array(x) X = np.array(X).reshape((-1))
Y = np.array(y) else:
X = X[0:len(Y)] X = np.array(range(line.size, line.size+len(Y)))
self.viz.line( self.viz.line(
Y=Y, Y=Y,
X=X, X=X,

View File

@ -175,7 +175,7 @@ def NumpyToImage(numpydate, foldname, title="", maxImageWidth=128, maxImageHeigh
data = numpydate.reshape((-1, numpydate.shape[-2], numpydate.shape[-1])) data = numpydate.reshape((-1, numpydate.shape[-2], numpydate.shape[-1]))
datashape = data.shape datashape = data.shape
newdata = np.ones((datashape[0],datashape[1]+1,datashape[2]+1))*numpydatemin newdata = np.zeros((datashape[0],datashape[1]+1,datashape[2]+1))
newdata[:, 0:datashape[1], 0:datashape[2]]=data newdata[:, 0:datashape[1], 0:datashape[2]]=data
datashape = newdata.shape datashape = newdata.shape