Refine find best 8
This commit is contained in:
parent
f858ae1821
commit
b0246d2a95
|
@ -60,7 +60,7 @@ traindata, testdata = Loader.Cifar10Mono(batchsize, num_workers=0, shuffle=True)
|
||||||
# weight = EvaluatorUnsuper.UnsuperLearnSearchWeight(model, layer, traindata, NumSearch=100000, SearchChannelRatio=8, Interation=10)
|
# weight = EvaluatorUnsuper.UnsuperLearnSearchWeight(model, layer, traindata, NumSearch=100000, SearchChannelRatio=8, Interation=10)
|
||||||
# np.save("WeightSearch.npy", weight)
|
# np.save("WeightSearch.npy", weight)
|
||||||
|
|
||||||
# weight = EvaluatorUnsuper.UnsuperLearnTrainWeight(model, layer, traindata)
|
# weight = EvaluatorUnsuper.UnsuperLearnTrainWeight(model, layer, traindata, NumTrain=5000)
|
||||||
# np.save("WeightTrain.npy", weight)
|
# np.save("WeightTrain.npy", weight)
|
||||||
|
|
||||||
|
|
||||||
|
@ -72,20 +72,21 @@ traindata, testdata = Loader.Cifar10Mono(batchsize, num_workers=0, shuffle=True)
|
||||||
# utils.NumpyToImage(bestweight, CurrentPath+"image")
|
# utils.NumpyToImage(bestweight, CurrentPath+"image")
|
||||||
|
|
||||||
|
|
||||||
# weight = np.load(CurrentPath+"WeightTrain.npy")
|
weight = np.load(CurrentPath+"WeightTrain.npy")
|
||||||
# bestweight = EvaluatorUnsuper.UnsuperLearnFindBestWeight(model,layer,weight,traindata,128,100000)
|
bestweight = EvaluatorUnsuper.UnsuperLearnFindBestWeight(
|
||||||
# np.save(CurrentPath+"bestweightTrain.npy", bestweight)
|
model, layer, weight, traindata, databatchs=128, interation=100000)
|
||||||
# utils.NumpyToImage(bestweight, CurrentPath+"image")
|
np.save(CurrentPath+"bestweightTrain.npy", bestweight)
|
||||||
|
utils.NumpyToImage(bestweight, CurrentPath+"image")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
weight = np.load(CurrentPath+"bestweightSearch.npy")
|
# weight = np.load(CurrentPath+"bestweightSearch.npy")
|
||||||
EvaluatorUnsuper.SetModelConvWeight(model,layer,weight)
|
# EvaluatorUnsuper.SetModelConvWeight(model,layer,weight)
|
||||||
utils.SaveModel(model,CurrentPath+"/checkpointSearch.pkl")
|
# utils.SaveModel(model,CurrentPath+"/checkpointSearch.pkl")
|
||||||
|
|
||||||
weight = np.load(CurrentPath+"bestweightTrain.npy")
|
# weight = np.load(CurrentPath+"bestweightTrain.npy")
|
||||||
EvaluatorUnsuper.SetModelConvWeight(model,layer,weight)
|
# EvaluatorUnsuper.SetModelConvWeight(model,layer,weight)
|
||||||
utils.SaveModel(model,CurrentPath+"/checkpointTrain.pkl")
|
# utils.SaveModel(model,CurrentPath+"/checkpointTrain.pkl")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -14,6 +14,8 @@ from torch.utils.data import Dataset, DataLoader
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
import random
|
import random
|
||||||
import cv2
|
import cv2
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
|
||||||
CurrentPath = os.path.split(os.path.realpath(__file__))[0]+"/"
|
CurrentPath = os.path.split(os.path.realpath(__file__))[0]+"/"
|
||||||
sys.path.append(CurrentPath+'../tools')
|
sys.path.append(CurrentPath+'../tools')
|
||||||
|
@ -91,7 +93,6 @@ def UnsuperLearnSearchWeight(model, layer, dataloader, NumSearch=10000, SaveChan
|
||||||
tl.data=utils.SetDevice(torch.from_numpy(minweight[0:tl.out_channels]))
|
tl.data=utils.SetDevice(torch.from_numpy(minweight[0:tl.out_channels]))
|
||||||
return minweight
|
return minweight
|
||||||
|
|
||||||
|
|
||||||
def TrainLayer(netmodel, layer, SearchLayer, DataSet, Epoch=100):
|
def TrainLayer(netmodel, layer, SearchLayer, DataSet, Epoch=100):
|
||||||
netmodel.eval()
|
netmodel.eval()
|
||||||
sample = utils.SetDevice(torch.empty((SearchLayer.out_channels,0)))
|
sample = utils.SetDevice(torch.empty((SearchLayer.out_channels,0)))
|
||||||
|
@ -133,8 +134,8 @@ def UnsuperLearnTrainWeight(model, layer, dataloader, NumTrain=500, TrainChannel
|
||||||
print("search :" + str(i))
|
print("search :" + str(i))
|
||||||
return minweight
|
return minweight
|
||||||
|
|
||||||
|
|
||||||
def UnsuperLearnFindBestWeight(netmodel, layer, weight, dataloader, databatchs=128,interation=10000):
|
def UnsuperLearnFindBestWeight(netmodel, layer, weight, dataloader, databatchs=128,interation=10000):
|
||||||
|
interationbar = tqdm(total=interation)
|
||||||
weight = weight.astype("float32")
|
weight = weight.astype("float32")
|
||||||
netmodel.eval()
|
netmodel.eval()
|
||||||
tl = netmodel.features[layer]
|
tl = netmodel.features[layer]
|
||||||
|
@ -155,28 +156,26 @@ def UnsuperLearnFindBestWeight(netmodel, layer, weight, dataloader, databatchs=1
|
||||||
for i in range(outchannels):
|
for i in range(outchannels):
|
||||||
shift.append(1<<i)
|
shift.append(1<<i)
|
||||||
shift = utils.SetDevice(torch.from_numpy(np.array(shift).astype("uint8")))
|
shift = utils.SetDevice(torch.from_numpy(np.array(shift).astype("uint8")))
|
||||||
|
datasnetout = []
|
||||||
|
for d in datas:
|
||||||
|
datasnetout.append(netmodel.ForwardLayer(d,forwardlayer))
|
||||||
|
datasnetout = torch.cat(datasnetout)
|
||||||
for i in range(len(indexs)):
|
for i in range(len(indexs)):
|
||||||
newlayer.weight.data=utils.SetDevice(torch.from_numpy(weight[indexs[i]]))
|
newlayer.weight.data=utils.SetDevice(torch.from_numpy(weight[indexs[i]]))
|
||||||
outputs = []
|
outputs = newlayer(datasnetout).transpose(0,1)
|
||||||
for d in datas:
|
outputs = outputs.reshape(tl.out_channels,-1).transpose(0,1)
|
||||||
outputs.append(newlayer(netmodel.ForwardLayer(d,forwardlayer)))
|
sums = ((outputs > outputs.mean(0)) * shift).sum(1).type(torch.float32)
|
||||||
outputs = torch.cat(outputs).transpose(0,1)
|
|
||||||
outputs = outputs.reshape(outputs.shape[0],-1)
|
|
||||||
mean = outputs.mean(1)
|
|
||||||
outputs = outputs.transpose(0,1)
|
|
||||||
posi = outputs > mean
|
|
||||||
posi = posi*shift
|
|
||||||
sums = posi.sum(1).type(torch.float32)
|
|
||||||
histc = sums.histc(256,0,255).type(torch.float32)
|
histc = sums.histc(256,0,255).type(torch.float32)
|
||||||
histc = histc[histc>0]
|
histc = histc[histc>0]
|
||||||
histc = histc/histc.sum()
|
histc = histc/histc.sum()
|
||||||
entropys.append((histc.log2()*histc).sum())
|
entropy = (histc.log2()*histc).sum()
|
||||||
print("search index : " + str(i))
|
entropys.append(entropy.detach().cpu().numpy())
|
||||||
|
interationbar.update(1)
|
||||||
argmin = np.argmin(entropys)
|
argmin = np.argmin(entropys)
|
||||||
bestweight = weight[indexs[argmin]]
|
bestweight = weight[indexs[argmin]]
|
||||||
|
interationbar.close()
|
||||||
return bestweight
|
return bestweight
|
||||||
|
|
||||||
|
|
||||||
def SetModelConvWeight(model, layer, weight):
|
def SetModelConvWeight(model, layer, weight):
|
||||||
w = utils.SetDevice(torch.from_numpy(weight))
|
w = utils.SetDevice(torch.from_numpy(weight))
|
||||||
model.features[layer].weight.data = w
|
model.features[layer].weight.data = w
|
|
@ -15,6 +15,7 @@ from PIL import Image
|
||||||
import random
|
import random
|
||||||
import cv2
|
import cv2
|
||||||
from visdom import Visdom
|
from visdom import Visdom
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
|
||||||
CurrentPath = os.path.split(os.path.realpath(__file__))[0]+"/"
|
CurrentPath = os.path.split(os.path.realpath(__file__))[0]+"/"
|
||||||
|
@ -36,45 +37,44 @@ batchsize = 128
|
||||||
# model = utils.SetDevice(Model.Net31535())
|
# model = utils.SetDevice(Model.Net31535())
|
||||||
# optimizer = optim.Adam(model.parameters(), lr=0.01)
|
# optimizer = optim.Adam(model.parameters(), lr=0.01)
|
||||||
|
|
||||||
|
# model = utils.LoadModel(model, CurrentPath+"/checkpointSearch.pkl")
|
||||||
|
|
||||||
|
|
||||||
# traindata, testdata = Loader.MNIST(batchsize, num_workers=4)
|
# traindata, testdata = Loader.MNIST(batchsize, num_workers=4)
|
||||||
# traindata, testdata = Loader.RandomMnist(batchsize, num_workers=4, style="Vertical")
|
# traindata, testdata = Loader.RandomMnist(batchsize, num_workers=4, style="Vertical")
|
||||||
# traindata, testdata = Loader.RandomMnist(batchsize, num_workers=4, style="Horizontal")
|
# traindata, testdata = Loader.RandomMnist(batchsize, num_workers=4, style="Horizontal")
|
||||||
# traindata, testdata = Loader.RandomMnist(batchsize, num_workers=4, style="VerticalOneLine")
|
# traindata, testdata = Loader.RandomMnist(batchsize, num_workers=4, style="VerticalOneLine")
|
||||||
# traindata, testdata = Loader.RandomMnist(batchsize, num_workers=4, style="VerticalZebra")
|
# traindata, testdata = Loader.RandomMnist(batchsize, num_workers=4, style="VerticalZebra")
|
||||||
traindata, testdata = Loader.Cifar10Mono(batchsize, num_workers=4,shuffle=True,trainsize=500)
|
traindata, testdata = Loader.Cifar10Mono(batchsize, num_workers=4,shuffle=True,trainsize=140)
|
||||||
|
|
||||||
|
|
||||||
# WebVisual.InitVisdom()
|
WebVisual.InitVisdom()
|
||||||
window = WebVisual.LineWin()
|
window = WebVisual.LineWin()
|
||||||
lineNoPre = WebVisual.Line("NoPre")
|
lineNoPre = WebVisual.Line(window, "NoPre")
|
||||||
linePretrain = WebVisual.Line("Pretrain")
|
linePretrainSearch = WebVisual.Line(window, "PretrainSearch")
|
||||||
|
linePretrainTrain = WebVisual.Line(window, "PretrainTrain")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# model = utils.SetDevice(Model.Net3335())
|
|
||||||
model = utils.SetDevice(Model.Net3Grad335())
|
model = utils.SetDevice(Model.Net3Grad335())
|
||||||
model = utils.LoadModel(model, CurrentPath+"/checkpoint.pkl")
|
model = utils.LoadModel(model, CurrentPath+"/checkpointTrain.pkl")
|
||||||
|
|
||||||
optimizer = optim.SGD(model.parameters(), lr=0.1)
|
optimizer = optim.SGD(model.parameters(), lr=0.1)
|
||||||
for i in range(1000):
|
Train.TrainEpochs(model,traindata,optimizer,testdata,3000,30,linePretrainTrain)
|
||||||
Train.train(model,traindata,optimizer,epoch=i)
|
|
||||||
window.AppendData(linePretrain,Train.test(model,testdata))
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
model = utils.SetDevice(Model.Net3335())
|
model = utils.SetDevice(Model.Net3335())
|
||||||
model = utils.LoadModel(model, CurrentPath+"/checkpoint.pkl")
|
model = utils.LoadModel(model, CurrentPath+"/checkpointTrain.pkl")
|
||||||
|
|
||||||
optimizer = optim.SGD(model.parameters(), lr=0.1)
|
optimizer = optim.SGD(model.parameters(), lr=0.1)
|
||||||
for i in range(1000):
|
Train.TrainEpochs(model,traindata,optimizer,testdata,3000,30,lineNoPre)
|
||||||
Train.train(model, traindata, optimizer, epoch=i)
|
|
||||||
window.AppendData(lineNoPre, Train.test(model, testdata))
|
|
||||||
|
model = utils.SetDevice(Model.Net3Grad335())
|
||||||
|
model = utils.LoadModel(model, CurrentPath+"/checkpointSearch.pkl")
|
||||||
|
optimizer = optim.SGD(model.parameters(), lr=0.1)
|
||||||
|
Train.TrainEpochs(model,traindata,optimizer,testdata,3000,30,linePretrainSearch)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Binary file not shown.
|
@ -9,12 +9,14 @@ import torch.nn as nn
|
||||||
import torch
|
import torch
|
||||||
import os
|
import os
|
||||||
import utils as utils
|
import utils as utils
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
|
||||||
def train(model, train_loader, optimizer, epoch=0):
|
def train(model, train_loader, optimizer, epoch=0):
|
||||||
model.train()
|
model.train()
|
||||||
batchsize = int(train_loader.sampler.num_samples /
|
batchsize = int(train_loader.sampler.num_samples /
|
||||||
train_loader.batch_size / 5)+1
|
train_loader.batch_size / 5)+1
|
||||||
|
pbar = tqdm(total=train_loader.sampler.num_samples)
|
||||||
for batch_idx, (data, target) in enumerate(train_loader):
|
for batch_idx, (data, target) in enumerate(train_loader):
|
||||||
data = utils.SetDevice(data)
|
data = utils.SetDevice(data)
|
||||||
target = utils.SetDevice(target)
|
target = utils.SetDevice(target)
|
||||||
|
@ -25,13 +27,16 @@ def train(model, train_loader, optimizer, epoch=0):
|
||||||
loss.backward()
|
loss.backward()
|
||||||
optimizer.step()
|
optimizer.step()
|
||||||
|
|
||||||
|
pbar.update(train_loader.batch_size)
|
||||||
if batch_idx % batchsize == 0 and batch_idx > 0:
|
if batch_idx % batchsize == 0 and batch_idx > 0:
|
||||||
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'
|
pbar.set_description("Loss:"+str(loss.item()))
|
||||||
.format(epoch, batch_idx * len(data),
|
# print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'
|
||||||
len(train_loader.dataset),
|
# .format(epoch, batch_idx * len(data),
|
||||||
100. * batch_idx /
|
# len(train_loader.dataset),
|
||||||
len(train_loader),
|
# 100. * batch_idx /
|
||||||
loss.item()))
|
# len(train_loader),
|
||||||
|
# loss.item()))
|
||||||
|
pbar.close()
|
||||||
|
|
||||||
|
|
||||||
def test(model, test_loader):
|
def test(model, test_loader):
|
||||||
|
@ -43,15 +48,23 @@ def test(model, test_loader):
|
||||||
data = utils.SetDevice(data)
|
data = utils.SetDevice(data)
|
||||||
target = utils.SetDevice(target)
|
target = utils.SetDevice(target)
|
||||||
output = model(data)
|
output = model(data)
|
||||||
|
|
||||||
# sum up batch loss
|
# sum up batch loss
|
||||||
test_loss += F.nll_loss(output, target, reduction='sum').item()
|
test_loss += F.nll_loss(output, target, reduction='sum').item()
|
||||||
# get the index of the max log-probability
|
# get the index of the max log-probability
|
||||||
pred = output.max(1, keepdim=True)[1]
|
pred = output.max(1, keepdim=True)[1]
|
||||||
correct += pred.eq(target.view_as(pred)).sum().item()
|
correct += pred.eq(target.view_as(pred)).sum().item()
|
||||||
|
|
||||||
test_loss /= len(test_loader.dataset)
|
test_loss /= len(test_loader.dataset)
|
||||||
accu = 100. * correct / len(test_loader.dataset)
|
accu = 100. * correct / len(test_loader.dataset)
|
||||||
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'
|
# print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'
|
||||||
.format(test_loss, correct, len(test_loader.dataset), accu))
|
# .format(test_loss, correct, len(test_loader.dataset), accu))
|
||||||
return accu
|
return accu
|
||||||
|
|
||||||
|
|
||||||
|
def TrainEpochs(model, traindata, optimizer, testdata, epoch=100,testepoch=10, line=None):
|
||||||
|
epochbar = tqdm(total=epoch)
|
||||||
|
for i in range(epoch):
|
||||||
|
train(model, traindata, optimizer, epoch=i)
|
||||||
|
if line and i % testepoch == 0 and i > 0:
|
||||||
|
line.AppendData(test(model, testdata))
|
||||||
|
epochbar.update(1)
|
||||||
|
epochbar.close()
|
||||||
|
|
|
@ -1,27 +1,43 @@
|
||||||
from visdom import Visdom
|
from visdom import Visdom
|
||||||
import random
|
import random
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import os
|
||||||
|
import time
|
||||||
|
|
||||||
|
|
||||||
def InitVisdom():
|
def InitVisdom():
|
||||||
viz = Visdom()
|
# nohub python3 -m visdom.server > visdom.server.log 2 > &1
|
||||||
assert viz.check_connection()
|
# subprocess.Popen("python3 -m visdom.server > visdom.server.log 2>&1", shell=True)
|
||||||
viz.close()
|
|
||||||
|
os.popen("python3 -m visdom.server > visdom.server.log 2>&1")
|
||||||
|
time.sleep(3) # to wait vindom.server started
|
||||||
|
# viz = Visdom()
|
||||||
|
# assert viz.check_connection()
|
||||||
|
# viz.close()
|
||||||
|
print("Connect http://localhost:8097")
|
||||||
|
|
||||||
|
|
||||||
class Line():
|
class Line():
|
||||||
def __init__(self,name,size):
|
def __init__(self, windows, name, size):
|
||||||
super(Line, self).__init__()
|
super(Line, self).__init__()
|
||||||
self.name = name
|
self.name = name
|
||||||
self.size = size
|
self.size = size
|
||||||
def __init__(self):
|
self.win = windows
|
||||||
|
|
||||||
|
def __init__(self, windows):
|
||||||
super(Line, self).__init__()
|
super(Line, self).__init__()
|
||||||
self.name = str(random.random())
|
self.name = str(random.random())
|
||||||
self.size = 0
|
self.size = 0
|
||||||
def __init__(self,name):
|
self.win = windows
|
||||||
|
|
||||||
|
def __init__(self, windows, name):
|
||||||
super(Line, self).__init__()
|
super(Line, self).__init__()
|
||||||
self.name = name
|
self.name = name
|
||||||
self.size = 0
|
self.size = 0
|
||||||
|
self.win = windows
|
||||||
|
|
||||||
|
def AppendData(self, y):
|
||||||
|
self.win.AppendData(self, y)
|
||||||
|
|
||||||
class LineWin():
|
class LineWin():
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
|
@ -61,4 +77,3 @@ class LineWin():
|
||||||
name=line.name
|
name=line.name
|
||||||
)
|
)
|
||||||
line.size = line.size + len(y)
|
line.size = line.size + len(y)
|
||||||
|
|
||||||
|
|
|
@ -0,0 +1,25 @@
|
||||||
|
nohup: ignoring input
|
||||||
|
/home/colin/anaconda3/lib/python3.7/site-packages/visdom/server.py:30: DeprecationWarning: zmq.eventloop.ioloop is deprecated in pyzmq 17. pyzmq now works with default tornado and asyncio eventloops.
|
||||||
|
ioloop.install() # Needs to happen before any tornado imports!
|
||||||
|
Traceback (most recent call last):
|
||||||
|
File "/home/colin/anaconda3/lib/python3.7/runpy.py", line 193, in _run_module_as_main
|
||||||
|
"__main__", mod_spec)
|
||||||
|
File "/home/colin/anaconda3/lib/python3.7/runpy.py", line 85, in _run_code
|
||||||
|
exec(code, run_globals)
|
||||||
|
File "/home/colin/anaconda3/lib/python3.7/site-packages/visdom/server.py", line 1308, in <module>
|
||||||
|
download_scripts_and_run()
|
||||||
|
File "/home/colin/anaconda3/lib/python3.7/site-packages/visdom/server.py", line 1304, in download_scripts_and_run
|
||||||
|
main()
|
||||||
|
File "/home/colin/anaconda3/lib/python3.7/site-packages/visdom/server.py", line 1299, in main
|
||||||
|
print_func=print_func, user_credential=user_credential)
|
||||||
|
File "/home/colin/anaconda3/lib/python3.7/site-packages/visdom/server.py", line 1219, in start_server
|
||||||
|
app.listen(port, max_buffer_size=1024 ** 3)
|
||||||
|
File "/home/colin/anaconda3/lib/python3.7/site-packages/tornado/web.py", line 2042, in listen
|
||||||
|
server.listen(port, address)
|
||||||
|
File "/home/colin/anaconda3/lib/python3.7/site-packages/tornado/tcpserver.py", line 143, in listen
|
||||||
|
sockets = bind_sockets(port, address=address)
|
||||||
|
File "/home/colin/anaconda3/lib/python3.7/site-packages/tornado/netutil.py", line 168, in bind_sockets
|
||||||
|
sock.bind(sockaddr)
|
||||||
|
OSError: [Errno 98] Address already in use
|
||||||
|
Checking for scripts.
|
||||||
|
It's Alive!
|
Loading…
Reference in New Issue