Add two method of real wit kernel genarator.
1 get 8 from 4000 with entropy calculation. 2 Auto Grad to regrethion kernel.
|
@ -55,8 +55,33 @@ model = utils.LoadModel(model, CurrentPath+"/checkpoint.pkl")
|
|||
# traindata, testdata = Loader.Cifar10Mono(batchsize)
|
||||
traindata, testdata = Loader.Cifar10Mono(batchsize, num_workers=0, shuffle=True)
|
||||
|
||||
def ConvKernelToImage(model, layer, foldname):
|
||||
if not os.path.exists(foldname):
|
||||
os.mkdir(foldname)
|
||||
a2 = model.features[layer].weight.data
|
||||
a2 = a2.cpu().detach().numpy().reshape((-1, a2.shape[-2], a2.shape[-1]))
|
||||
for i in range(a2.shape[0]):
|
||||
d = a2[i]
|
||||
dmin = np.min(d)
|
||||
dmax = np.max(d)
|
||||
d = (d - dmin)*255.0/(dmax-dmin)
|
||||
d = d.astype(int)
|
||||
cv2.imwrite(foldname+"/"+str(i)+".png", d)
|
||||
|
||||
def GetSample(netmodel,layer,SearchLayer,DataSet,Interation=-1):
|
||||
def ConvKernelToImage(numpydate, foldname):
|
||||
if not os.path.exists(foldname):
|
||||
os.mkdir(foldname)
|
||||
a2 = numpydate.reshape((-1, numpydate.shape[-2], numpydate.shape[-1]))
|
||||
for i in range(a2.shape[0]):
|
||||
d = a2[i]
|
||||
dmin = np.min(d)
|
||||
dmax = np.max(d)
|
||||
d = (d - dmin)*255.0/(dmax-dmin)
|
||||
d = d.astype(int)
|
||||
cv2.imwrite(foldname+"/"+str(i)+".png", d)
|
||||
|
||||
|
||||
def GetScore(netmodel,layer,SearchLayer,DataSet,Interation=-1):
|
||||
netmodel.eval()
|
||||
sample = utils.SetDevice(torch.empty((SearchLayer.out_channels,0)))
|
||||
|
||||
|
@ -92,35 +117,13 @@ def GetSample(netmodel,layer,SearchLayer,DataSet,Interation=-1):
|
|||
dat2 = torch.mean(dat2 * dat2,dim=1)
|
||||
return dat2.cpu().detach().numpy()
|
||||
|
||||
def ConvKernelToImage(model, layer, foldname):
|
||||
if not os.path.exists(foldname):
|
||||
os.mkdir(foldname)
|
||||
a2 = model.features[layer].weight.data
|
||||
a2 = a2.cpu().detach().numpy().reshape((-1, a2.shape[-2], a2.shape[-1]))
|
||||
for i in range(a2.shape[0]):
|
||||
d = a2[i]
|
||||
dmin = np.min(d)
|
||||
dmax = np.max(d)
|
||||
d = (d - dmin)*255.0/(dmax-dmin)
|
||||
d = d.astype(int)
|
||||
cv2.imwrite(foldname+"/"+str(i)+".png", d)
|
||||
|
||||
def GetRandomSocre(netmodel,layer,dataloader,iteration=-1):
|
||||
weightshape = netmodel.features[layer].weight.data.shape
|
||||
newweight = np.random.uniform(-1.0,1.0,weightshape).astype("float32")
|
||||
netmodel.features[layer].weight.data=utils.SetDevice(torch.from_numpy(newweight))
|
||||
|
||||
score = GetSample(netmodel,0,dataloader,iteration)
|
||||
return np.array(score), newweight
|
||||
|
||||
|
||||
def UnsuperLearnConvWeight(model, layer, dataloader, NumSearch = 10000, ChannelRatio=1,Interation=10):
|
||||
def UnsuperLearnSearchWeight(model, layer, dataloader, NumSearch=10000, SaveChannelRatio=500, SearchChannelRatio=1, Interation=10):
|
||||
tl = model.features[layer]
|
||||
newlayer = nn.Conv2d(tl.in_channels, tl.out_channels * ChannelRatio, tl.kernel_size,
|
||||
newlayer = nn.Conv2d(tl.in_channels, tl.out_channels * SearchChannelRatio, tl.kernel_size,
|
||||
tl.stride, tl.padding, tl.dilation, tl.groups, tl.bias, tl.padding_mode)
|
||||
newlayer = utils.SetDevice(newlayer)
|
||||
|
||||
newchannels = tl.out_channels * ChannelRatio
|
||||
newchannels = tl.out_channels * SaveChannelRatio
|
||||
newweightshape = list(newlayer.weight.data.shape)
|
||||
|
||||
minactive = np.empty((0))
|
||||
|
@ -130,7 +133,7 @@ def UnsuperLearnConvWeight(model, layer, dataloader, NumSearch = 10000, ChannelR
|
|||
newweight = np.random.uniform(-1.0,1.0,newweightshape).astype("float32")
|
||||
newlayer.weight.data=utils.SetDevice(torch.from_numpy(newweight))
|
||||
|
||||
score = GetSample(model, layer, newlayer, dataloader, Interation)
|
||||
score = GetScore(model, layer, newlayer, dataloader, Interation)
|
||||
|
||||
minactive = np.append(minactive, score)
|
||||
minweight = np.concatenate((minweight, newweight))
|
||||
|
@ -142,11 +145,64 @@ def UnsuperLearnConvWeight(model, layer, dataloader, NumSearch = 10000, ChannelR
|
|||
if i % (NumSearch/10) == 0:
|
||||
tl.data=utils.SetDevice(torch.from_numpy(minweight[0:tl.out_channels]))
|
||||
utils.SaveModel(model, CurrentPath+"/checkpoint.pkl")
|
||||
|
||||
tl.data=utils.SetDevice(torch.from_numpy(minweight[0:tl.out_channels]))
|
||||
return minweight
|
||||
|
||||
|
||||
UnsuperLearnConvWeight(model, layer, traindata, NumSearch=100000, ChannelRatio=8, Interation=10)
|
||||
def TrainLayer(netmodel, layer, SearchLayer, DataSet, Epoch=100):
|
||||
netmodel.eval()
|
||||
sample = utils.SetDevice(torch.empty((SearchLayer.out_channels,0)))
|
||||
layer = layer-1
|
||||
SearchLayer.weight.data.requires_grad=True
|
||||
optimizer = optim.SGD(SearchLayer.parameters(), lr=0.1)
|
||||
for e in range(Epoch):
|
||||
for batch_idx, (data, target) in enumerate(DataSet):
|
||||
optimizer.zero_grad()
|
||||
data = utils.SetDevice(data)
|
||||
target = utils.SetDevice(target)
|
||||
output = netmodel.ForwardLayer(data,layer)
|
||||
output = SearchLayer(output)
|
||||
sample = torch.reshape(output.transpose(0,1),(SearchLayer.out_channels,-1))
|
||||
sample_mean=torch.mean(sample,dim=1,keepdim=True)
|
||||
dat1 = torch.mean(torch.abs(sample - sample_mean),dim=1,keepdim=True)
|
||||
dat2 = (sample - sample_mean)/dat1
|
||||
dat2 = torch.mean(dat2 * dat2,dim=1)
|
||||
label = dat2*0.5
|
||||
loss = F.l1_loss(dat2, label)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
print(" epoch :" + str(e))
|
||||
return SearchLayer.weight.data.cpu().detach().numpy()
|
||||
|
||||
ConvKernelToImage(model, layer, CurrentPath+"image")
|
||||
utils.SaveModel(model,CurrentPath+"/checkpoint.pkl")
|
||||
def UnsuperLearnTrainWeight(model, layer, dataloader, NumTrain=500, TrainChannelRatio=1, Epoch=100):
|
||||
tl = model.features[layer]
|
||||
newlayer = nn.Conv2d(tl.in_channels, tl.out_channels * TrainChannelRatio, tl.kernel_size,
|
||||
tl.stride, tl.padding, tl.dilation, tl.groups, tl.bias, tl.padding_mode)
|
||||
newlayer = utils.SetDevice(newlayer)
|
||||
newweightshape = list(newlayer.weight.data.shape)
|
||||
minactive = np.empty((0))
|
||||
minweight = np.empty([0,newweightshape[1],newweightshape[2],newweightshape[3]])
|
||||
for i in range(NumTrain):
|
||||
newweight = np.random.uniform(-1.0,1.0,newweightshape).astype("float32")
|
||||
newlayer.weight.data=utils.SetDevice(torch.from_numpy(newweight))
|
||||
newweight = TrainLayer(model, layer, newlayer, dataloader, Epoch)
|
||||
minweight = np.concatenate((minweight, newweight))
|
||||
print("search :" + str(i))
|
||||
return minweight
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# weight = UnsuperLearnSearchWeight(model, layer, traindata, NumSearch=100000, SearchChannelRatio=8, Interation=10)
|
||||
# np.save("WeightSearch.npy", weight)
|
||||
|
||||
weight = UnsuperLearnTrainWeight(model, layer, traindata)
|
||||
np.save("WeightTrain.npy", weight)
|
||||
|
||||
|
||||
|
||||
ConvKernelToImage(weight, CurrentPath+"image")
|
||||
# utils.SaveModel(model,CurrentPath+"/checkpoint.pkl")
|
||||
print("save model sucess")
|
||||
|
|
|
@ -0,0 +1,154 @@
|
|||
from __future__ import print_function
|
||||
import os
|
||||
import sys
|
||||
|
||||
# import multiprocessing
|
||||
# multiprocessing.set_start_method('spawn', True)
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torch.optim as optim
|
||||
import torchvision
|
||||
from torchvision import datasets, transforms
|
||||
import torchvision.models as models
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
from PIL import Image
|
||||
import random
|
||||
import cv2
|
||||
|
||||
|
||||
CurrentPath = os.path.split(os.path.realpath(__file__))[0]+"/"
|
||||
print("Current Path :" + CurrentPath)
|
||||
|
||||
sys.path.append(CurrentPath+'../tools')
|
||||
sys.path.append(CurrentPath+'../')
|
||||
|
||||
import Model as Model
|
||||
from tools import utils, Train, Loader
|
||||
|
||||
batchsize = 128
|
||||
|
||||
|
||||
# model = utils.SetDevice(Model.Net5Grad35())
|
||||
# model = utils.SetDevice(Model.Net31535())
|
||||
model = utils.SetDevice(Model.Net3Grad335())
|
||||
# model = utils.SetDevice(Model.Net3())
|
||||
|
||||
|
||||
layers = model.PrintLayer()
|
||||
layer = 0
|
||||
|
||||
model = utils.LoadModel(model, CurrentPath+"/checkpoint.pkl")
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# traindata, testdata = Loader.MNIST(batchsize)
|
||||
# traindata, testdata = Loader.RandomMnist(batchsize, style="Vertical")
|
||||
# traindata, testdata = Loader.RandomMnist(batchsize, style="Horizontal")
|
||||
# traindata, testdata = Loader.RandomMnist(batchsize, style="VerticalOneLine")
|
||||
# traindata, testdata = Loader.RandomMnist(batchsize, style="VerticalZebra")
|
||||
# traindata, testdata = Loader.Cifar10Mono(batchsize)
|
||||
traindata, testdata = Loader.Cifar10Mono(batchsize, num_workers=0, shuffle=True)
|
||||
|
||||
|
||||
def GetSample(netmodel,layer,SearchLayer,DataSet,Interation=-1):
|
||||
netmodel.eval()
|
||||
sample = utils.SetDevice(torch.empty((SearchLayer.out_channels,0)))
|
||||
|
||||
layer = layer-1
|
||||
|
||||
# layerout = []
|
||||
# layerint = []
|
||||
# def getnet(self, input, output):
|
||||
# layerout.append(output)
|
||||
# layerint.append(input)
|
||||
# handle = netmodel.features[layer].register_forward_hook(getnet)
|
||||
# netmodel.ForwardLayer(data,layer)
|
||||
# output = layerout[0][:,:,:,:]
|
||||
# handle.remove()
|
||||
|
||||
|
||||
for batch_idx, (data, target) in enumerate(DataSet):
|
||||
data = utils.SetDevice(data)
|
||||
target = utils.SetDevice(target)
|
||||
output = netmodel.ForwardLayer(data,layer)
|
||||
output = SearchLayer(output)
|
||||
data.detach()
|
||||
target.detach()
|
||||
|
||||
output = torch.reshape(output.transpose(0,1),(SearchLayer.out_channels,-1))
|
||||
sample = torch.cat((sample,output),1)
|
||||
if Interation > 0 and batch_idx >= (Interation-1):
|
||||
break
|
||||
|
||||
sample_mean=torch.mean(sample,dim=1,keepdim=True)
|
||||
dat1 = torch.mean(torch.abs(sample - sample_mean),dim=1,keepdim=True)
|
||||
dat2 = (sample - sample_mean)/dat1
|
||||
dat2 = torch.mean(dat2 * dat2,dim=1)
|
||||
return dat2.cpu().detach().numpy()
|
||||
|
||||
def ConvKernelToImage(model, layer, foldname):
|
||||
if not os.path.exists(foldname):
|
||||
os.mkdir(foldname)
|
||||
a2 = model.features[layer].weight.data
|
||||
a2 = a2.cpu().detach().numpy().reshape((-1, a2.shape[-2], a2.shape[-1]))
|
||||
for i in range(a2.shape[0]):
|
||||
d = a2[i]
|
||||
dmin = np.min(d)
|
||||
dmax = np.max(d)
|
||||
d = (d - dmin)*255.0/(dmax-dmin)
|
||||
d = d.astype(int)
|
||||
cv2.imwrite(foldname+"/"+str(i)+".png", d)
|
||||
|
||||
|
||||
def UnsuperLearnConvWeight(model, layer, dataloader, NumSearch=10000, SaveChannelRatio=500, SearchChannelRatio=1, Interation=10):
|
||||
tl = model.features[layer]
|
||||
newlayer = nn.Conv2d(tl.in_channels, tl.out_channels * SearchChannelRatio, tl.kernel_size,
|
||||
tl.stride, tl.padding, tl.dilation, tl.groups, tl.bias, tl.padding_mode)
|
||||
newlayer = utils.SetDevice(newlayer)
|
||||
|
||||
newchannels = tl.out_channels * SaveChannelRatio
|
||||
newweightshape = list(newlayer.weight.data.shape)
|
||||
|
||||
minactive = np.empty((0))
|
||||
minweight = np.empty([0,newweightshape[1],newweightshape[2],newweightshape[3]])
|
||||
|
||||
for i in range(NumSearch):
|
||||
newweight = np.random.uniform(-1.0,1.0,newweightshape).astype("float32")
|
||||
newlayer.weight.data=utils.SetDevice(torch.from_numpy(newweight))
|
||||
|
||||
score = GetSample(model, layer, newlayer, dataloader, Interation)
|
||||
|
||||
minactive = np.append(minactive, score)
|
||||
minweight = np.concatenate((minweight, newweight))
|
||||
|
||||
index = minactive.argsort()
|
||||
minactive = minactive[index[0:newchannels]]
|
||||
minweight = minweight[index[0:newchannels]]
|
||||
print("search random :" + str(i))
|
||||
if i % (NumSearch/10) == 0:
|
||||
tl.data=utils.SetDevice(torch.from_numpy(minweight[0:tl.out_channels]))
|
||||
utils.SaveModel(model, CurrentPath+"/checkpoint.pkl")
|
||||
|
||||
tl.data=utils.SetDevice(torch.from_numpy(minweight[0:tl.out_channels]))
|
||||
return minweight
|
||||
|
||||
|
||||
weight = UnsuperLearnConvWeight(model, layer, traindata, NumSearch=100000, SearchChannelRatio=8, Interation=10)
|
||||
np.save("weight.npy", weight)
|
||||
|
||||
ConvKernelToImage(model, layer, CurrentPath+"image")
|
||||
utils.SaveModel(model,CurrentPath+"/checkpoint.pkl")
|
||||
print("save model sucess")
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
weight = np.load("weight.npy")
|
|
@ -0,0 +1,153 @@
|
|||
from __future__ import print_function
|
||||
import os
|
||||
import sys
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torch.optim as optim
|
||||
import torchvision
|
||||
from torchvision import datasets, transforms
|
||||
import torchvision.models as models
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
from PIL import Image
|
||||
import random
|
||||
import cv2
|
||||
|
||||
|
||||
CurrentPath = os.path.split(os.path.realpath(__file__))[0]+"/"
|
||||
print("Current Path :" + CurrentPath)
|
||||
|
||||
sys.path.append(CurrentPath+'../tools')
|
||||
sys.path.append(CurrentPath+'../')
|
||||
|
||||
import Model as Model
|
||||
from tools import utils, Train, Loader
|
||||
|
||||
batchsize = 128
|
||||
|
||||
|
||||
# model = utils.SetDevice(Model.Net5Grad35())
|
||||
# model = utils.SetDevice(Model.Net31535())
|
||||
model = utils.SetDevice(Model.Net3Grad335())
|
||||
# model = utils.SetDevice(Model.Net3())
|
||||
|
||||
|
||||
layers = model.PrintLayer()
|
||||
layer = 0
|
||||
|
||||
model = utils.LoadModel(model, CurrentPath+"/checkpoint.pkl")
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# traindata, testdata = Loader.MNIST(batchsize)
|
||||
# traindata, testdata = Loader.RandomMnist(batchsize, style="Vertical")
|
||||
# traindata, testdata = Loader.RandomMnist(batchsize, style="Horizontal")
|
||||
# traindata, testdata = Loader.RandomMnist(batchsize, style="VerticalOneLine")
|
||||
# traindata, testdata = Loader.RandomMnist(batchsize, style="VerticalZebra")
|
||||
# traindata, testdata = Loader.Cifar10Mono(batchsize)
|
||||
traindata, testdata = Loader.Cifar10Mono(batchsize, num_workers=0, shuffle=True)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# k = np.ones((3,3)).astype("float32")*1.0
|
||||
# d = np.ones((3,3)).astype("float32")*3.0
|
||||
# l = np.ones((3,3)).astype("float32")*3.5
|
||||
|
||||
# k = torch.from_numpy(k)
|
||||
# d = torch.from_numpy(d)
|
||||
# l = torch.from_numpy(l)
|
||||
|
||||
# k.requires_grad=True
|
||||
|
||||
# optimizer = optim.SGD([k], lr=0.1)
|
||||
# optimizer.zero_grad()
|
||||
|
||||
|
||||
# output = k + d
|
||||
|
||||
# loss = F.l1_loss(output, l)
|
||||
# loss.backward()
|
||||
# optimizer.step()
|
||||
|
||||
|
||||
|
||||
def ConvKernelToImage(numpydate, foldname):
|
||||
if not os.path.exists(foldname):
|
||||
os.mkdir(foldname)
|
||||
a2 = numpydate.reshape((-1, numpydate.shape[-2], numpydate.shape[-1]))
|
||||
for i in range(a2.shape[0]):
|
||||
d = a2[i]
|
||||
dmin = np.min(d)
|
||||
dmax = np.max(d)
|
||||
d = (d - dmin)*255.0/(dmax-dmin)
|
||||
d = d.astype(int)
|
||||
cv2.imwrite(foldname+"/"+str(i)+".png", d)
|
||||
|
||||
|
||||
|
||||
def TrainLayer(netmodel, layer, SearchLayer, DataSet, Epoch=100):
|
||||
netmodel.eval()
|
||||
sample = utils.SetDevice(torch.empty((SearchLayer.out_channels,0)))
|
||||
layer = layer-1
|
||||
SearchLayer.weight.data.requires_grad=True
|
||||
optimizer = optim.SGD(SearchLayer.parameters(), lr=0.1)
|
||||
for e in range(Epoch):
|
||||
for batch_idx, (data, target) in enumerate(DataSet):
|
||||
optimizer.zero_grad()
|
||||
data = utils.SetDevice(data)
|
||||
target = utils.SetDevice(target)
|
||||
output = netmodel.ForwardLayer(data,layer)
|
||||
output = SearchLayer(output)
|
||||
sample = torch.reshape(output.transpose(0,1),(SearchLayer.out_channels,-1))
|
||||
sample_mean=torch.mean(sample,dim=1,keepdim=True)
|
||||
dat1 = torch.mean(torch.abs(sample - sample_mean),dim=1,keepdim=True)
|
||||
dat2 = (sample - sample_mean)/dat1
|
||||
dat2 = torch.mean(dat2 * dat2,dim=1)
|
||||
label = dat2*0.5
|
||||
loss = F.l1_loss(dat2, label)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
print(" epoch :" + str(e))
|
||||
return SearchLayer.weight.data.cpu().detach().numpy()
|
||||
|
||||
def UnsuperLearnTrainWeight(model, layer, dataloader, NumTrain=500, TrainChannelRatio=1, Epoch=100):
|
||||
tl = model.features[layer]
|
||||
newlayer = nn.Conv2d(tl.in_channels, tl.out_channels * TrainChannelRatio, tl.kernel_size,
|
||||
tl.stride, tl.padding, tl.dilation, tl.groups, tl.bias, tl.padding_mode)
|
||||
newlayer = utils.SetDevice(newlayer)
|
||||
|
||||
newweightshape = list(newlayer.weight.data.shape)
|
||||
|
||||
minactive = np.empty((0))
|
||||
minweight = np.empty([0,newweightshape[1],newweightshape[2],newweightshape[3]])
|
||||
for i in range(NumTrain):
|
||||
newweight = np.random.uniform(-1.0,1.0,newweightshape).astype("float32")
|
||||
newlayer.weight.data=utils.SetDevice(torch.from_numpy(newweight))
|
||||
newweight = TrainLayer(model, layer, newlayer, dataloader, 5)
|
||||
minweight = np.concatenate((minweight, newweight))
|
||||
|
||||
ConvKernelToImage(minweight, CurrentPath+"image")
|
||||
|
||||
print("search :" + str(i))
|
||||
|
||||
return minweight
|
||||
|
||||
|
||||
weight = UnsuperLearnTrainWeight(model, layer, traindata)
|
||||
np.save("WeightTrain.npy", weight)
|
||||
|
||||
# ConvKernelToImage(model, layer, CurrentPath+"image")
|
||||
# utils.SaveModel(model,CurrentPath+"/checkpoint.pkl")
|
||||
print("save model sucess")
|
Before Width: | Height: | Size: 77 B |
Before Width: | Height: | Size: 77 B |
Before Width: | Height: | Size: 77 B |
Before Width: | Height: | Size: 77 B |
Before Width: | Height: | Size: 77 B |
Before Width: | Height: | Size: 77 B |
Before Width: | Height: | Size: 77 B |
Before Width: | Height: | Size: 77 B |
Before Width: | Height: | Size: 77 B |
Before Width: | Height: | Size: 77 B |
Before Width: | Height: | Size: 77 B |
Before Width: | Height: | Size: 77 B |
Before Width: | Height: | Size: 77 B |
Before Width: | Height: | Size: 77 B |
Before Width: | Height: | Size: 77 B |
Before Width: | Height: | Size: 77 B |