train with pretrain

This commit is contained in:
colin 2019-08-23 23:27:45 +08:00
parent 81d8931842
commit d9df29f04a
26 changed files with 255 additions and 189 deletions

1
.gitignore vendored
View File

@ -6,3 +6,4 @@ __pycache__/
Dataset/ Dataset/
.vscode .vscode
/*/__pycache__ /*/__pycache__
.mypy_cache

View File

@ -39,63 +39,19 @@ model = utils.SetDevice(Model.Net3Grad335())
# model = utils.LoadModel(model, CurrentPath+"/checkpoint.pkl") model = utils.LoadModel(model, CurrentPath+"/checkpoint.pkl")
# a = model.features[0].weight.data
# traindata, testdata = Loader.MNIST(batchsize) # traindata, testdata = Loader.MNIST(batchsize)
# traindata, testdata = Loader.RandomMnist(batchsize, style="Vertical") # traindata, testdata = Loader.RandomMnist(batchsize, style="Vertical")
# traindata, testdata = Loader.RandomMnist(batchsize, style="Horizontal") # traindata, testdata = Loader.RandomMnist(batchsize, style="Horizontal")
# traindata, testdata = Loader.RandomMnist(batchsize, style="VerticalOneLine") # traindata, testdata = Loader.RandomMnist(batchsize, style="VerticalOneLine")
# traindata, testdata = Loader.RandomMnist(batchsize, style="VerticalZebra") # traindata, testdata = Loader.RandomMnist(batchsize, style="VerticalZebra")
# traindata, testdata = Loader.Cifar10Mono(batchsize) # traindata, testdata = Loader.Cifar10Mono(batchsize)
traindata, testdata = Loader.Cifar10Mono(batchsize, num_workers=2, shuffle=True) traindata, testdata = Loader.Cifar10Mono(batchsize, num_workers=0, shuffle=True)
# def GetSample(netmodel,layer,dataloader,iteration=-1):
# netmodel.eval()
# sample = []
# for batch_idx, (data, target) in enumerate(dataloader):
# data = utils.SetDevice(data)
# target = utils.SetDevice(target)
# layerout = []
# layerint = []
# def getnet(self, input, output):
# layerout.append(output)
# layerint.append(input)
# handle = netmodel.features[layer].register_forward_hook(getnet)
# netmodel.forwardLayer(data,layer=layer)
# output = layerout[0][:,:,:,:]
# handle.remove()
# data.detach()
# target.detach()
# sample.append(output.cpu().detach().numpy())
# if iteration > 0 and batch_idx >= (iteration-1):
# break
# sample = np.array(sample)
# sample = np.swapaxes(sample,2,0)
# sample = np.reshape(sample,(sample.shape[0],-1))
# active = []
# for i in range(sample.shape[0]):
# data = sample[i]
# mean = np.mean(data)
# dat1 = np.mean(np.abs(data - mean))
# dat2 = (data - mean)/dat1
# dat2 = np.mean(dat2*dat2)
# active.append(dat2)
# return active
def GetSample(netmodel,layer,dataloader,iteration=-1): def GetSample(netmodel,layer,dataloader,iteration=-1):
@ -128,15 +84,18 @@ def GetSample(netmodel,layer,dataloader,iteration=-1):
dat2 = torch.mean(dat2 * dat2,dim=1) dat2 = torch.mean(dat2 * dat2,dim=1)
return dat2.cpu().detach().numpy() return dat2.cpu().detach().numpy()
def weightToImage(weight,filename): def ConvKernelToImage(model, layer, foldname):
a2 = model.features[layear].weight.data[channel] if not os.path.exists(foldname):
a2 = a2.cpu().detach().numpy().reshape(( a2.shape[-2], a2.shape[-1])) os.mkdir(foldname)
a2 = model.features[layer].weight.data
a2min = np.min(a2) a2 = a2.cpu().detach().numpy().reshape((-1, a2.shape[-2], a2.shape[-1]))
a2max = np.max(a2) for i in range(a2.shape[0]):
a2 = (a2 - a2min)*255.0/(a2max-a2min) d = a2[i]
a2 = a2.astype(int) dmin = np.min(d)
cv2.imwrite(filename,a2) dmax = np.max(d)
d = (d - dmin)*255.0/(dmax-dmin)
d = d.astype(int)
cv2.imwrite(foldname+"/"+str(i)+".png", d)
def GetRandomSocre(netmodel,layer,dataloader,iteration=-1): def GetRandomSocre(netmodel,layer,dataloader,iteration=-1):
weightshape = netmodel.features[layer].weight.data.shape weightshape = netmodel.features[layer].weight.data.shape
@ -148,6 +107,12 @@ def GetRandomSocre(netmodel,layer,dataloader,iteration=-1):
ConvKernelToImage(model, 0, CurrentPath+"image")
layer = 0 layer = 0
weightshape = list(model.features[layer].weight.data.shape) weightshape = list(model.features[layer].weight.data.shape)

View File

@ -14,6 +14,7 @@ from torch.utils.data import Dataset, DataLoader
from PIL import Image from PIL import Image
import random import random
import cv2 import cv2
from visdom import Visdom
CurrentPath = os.path.split(os.path.realpath(__file__))[0]+"/" CurrentPath = os.path.split(os.path.realpath(__file__))[0]+"/"
@ -23,36 +24,73 @@ sys.path.append(CurrentPath+'../tools')
sys.path.append(CurrentPath+'../') sys.path.append(CurrentPath+'../')
import Model import Model
from tools import utils, Train, Loader from tools import utils, Train, Loader, WebVisual
batchsize = 128 batchsize = 128
# traindata, testdata = Loader.MNIST(batchsize, num_workers=4)
# traindata, testdata = Loader.RandomMnist(batchsize, num_workers=4, style="Vertical")
# traindata, testdata = Loader.RandomMnist(batchsize, num_workers=4, style="Horizontal")
# traindata, testdata = Loader.RandomMnist(batchsize, num_workers=4, style="VerticalOneLine")
# traindata, testdata = Loader.RandomMnist(batchsize, num_workers=4, style="VerticalZebra")
traindata, testdata = Loader.Cifar10Mono(batchsize, num_workers=4,shuffle=True,trainsize=500)
WebVisual.InitVisdom()
window = WebVisual.LineWin()
lineNoPre = WebVisual.Line("NoPre")
linePretrain = WebVisual.Line("Pretrain")
# model = utils.SetDevice(Model.Net535()) # model = utils.SetDevice(Model.Net535())
# model = utils.SetDevice(Model.Net5Grad35()) # model = utils.SetDevice(Model.Net5Grad35())
# model = utils.SetDevice(Model.Net31535()) # model = utils.SetDevice(Model.Net31535())
# model = utils.SetDevice(Model.Net3335()) # Test set: Average loss: 1.5294, Accuracy: 4501/10000 (45%) # model = utils.SetDevice(Model.Net3335())
model = utils.SetDevice(Model.Net3Grad335()) model = utils.SetDevice(Model.Net3Grad335())
# model = utils.LoadModel(model, CurrentPath+"/checkpoint.pkl")
optimizer = optim.SGD(model.parameters(), lr=0.1)
# optimizer = optim.Adam(model.parameters(), lr=0.01)
model = utils.LoadModel(model, CurrentPath+"/checkpoint.pkl") model = utils.LoadModel(model, CurrentPath+"/checkpoint.pkl")
for i in range(2000):
optimizer = optim.SGD(model.parameters(), lr=0.01)
# traindata, testdata = Loader.MNIST(batchsize, num_workers=8)
# traindata, testdata = Loader.RandomMnist(batchsize, num_workers=8, style="Vertical")
# traindata, testdata = Loader.RandomMnist(batchsize, num_workers=8, style="Horizontal")
# traindata, testdata = Loader.RandomMnist(batchsize, num_workers=8, style="VerticalOneLine")
# traindata, testdata = Loader.RandomMnist(batchsize, num_workers=8, style="VerticalZebra")
traindata, testdata = Loader.Cifar10Mono(batchsize, num_workers=8)
for i in range(300):
Train.train(model,traindata,optimizer,epoch=i) Train.train(model,traindata,optimizer,epoch=i)
Train.test(model,testdata) window.AppendData(linePretrain,Train.test(model,testdata))
utils.SaveModel(model,CurrentPath+"/checkpoint.pkl")
model = utils.SetDevice(Model.Net3335())
optimizer = optim.SGD(model.parameters(), lr=0.1)
for i in range(2000):
Train.train(model, traindata, optimizer, epoch=i)
window.AppendData(lineNoPre, Train.test(model, testdata))
# utils.SaveModel(model,CurrentPath+"/checkpointSGDPreTrain.pkl")

Binary file not shown.

Binary file not shown.

Binary file not shown.

BIN
FilterEvaluator/image/0.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 B

BIN
FilterEvaluator/image/1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 B

BIN
FilterEvaluator/image/2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 B

BIN
FilterEvaluator/image/3.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 B

BIN
FilterEvaluator/image/4.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 B

BIN
FilterEvaluator/image/5.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 B

BIN
FilterEvaluator/image/6.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 B

BIN
FilterEvaluator/image/7.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 B

View File

@ -1,5 +1,5 @@
from __future__ import print_function from __future__ import print_function
from vgg19Pytorch import Vgg19Module # from vgg19Pytorch import Vgg19Module
import torch import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
@ -83,94 +83,94 @@ for w, p in zip(words[top5], probs):
print('{}\tprobability:{}'.format(w, p)) print('{}\tprobability:{}'.format(w, p))
#endregion #endregion
# region write image and weight # # region write image and weight
image = readAndPreprocessImage(CurrentPath+"dog_resize.jpg") # image = readAndPreprocessImage(CurrentPath+"dog_resize.jpg")
conv1_1_pad = F.pad(image, (1L, 1L, 1L, 1L)) # conv1_1_pad = F.pad(image, (1L, 1L, 1L, 1L))
conv1_1 = vgg19.conv1_1(conv1_1_pad) # conv1_1 = vgg19.conv1_1(conv1_1_pad)
relu1_1 = F.relu(conv1_1) # relu1_1 = F.relu(conv1_1)
conv1_2_pad = F.pad(relu1_1, (1L, 1L, 1L, 1L)) # conv1_2_pad = F.pad(relu1_1, (1L, 1L, 1L, 1L))
conv1_2 = vgg19.conv1_2(conv1_2_pad) # conv1_2 = vgg19.conv1_2(conv1_2_pad)
relu1_2 = F.relu(conv1_2) # relu1_2 = F.relu(conv1_2)
pool1 = F.max_pool2d(relu1_2, kernel_size=(2L, 2L), stride=(2L, 2L), padding=(0L,), ceil_mode=True) # pool1 = F.max_pool2d(relu1_2, kernel_size=(2L, 2L), stride=(2L, 2L), padding=(0L,), ceil_mode=True)
conv2_1_pad = F.pad(pool1, (1L, 1L, 1L, 1L)) # conv2_1_pad = F.pad(pool1, (1L, 1L, 1L, 1L))
conv2_1 = vgg19.conv2_1(conv2_1_pad) # conv2_1 = vgg19.conv2_1(conv2_1_pad)
relu2_1 = F.relu(conv2_1) # relu2_1 = F.relu(conv2_1)
conv2_2_pad = F.pad(relu2_1, (1L, 1L, 1L, 1L)) # conv2_2_pad = F.pad(relu2_1, (1L, 1L, 1L, 1L))
conv2_2 = vgg19.conv2_2(conv2_2_pad) # conv2_2 = vgg19.conv2_2(conv2_2_pad)
relu2_2 = F.relu(conv2_2) # relu2_2 = F.relu(conv2_2)
pool2 = F.max_pool2d(relu2_2, kernel_size=(2L, 2L), stride=(2L, 2L), padding=(0L,), ceil_mode=True) # pool2 = F.max_pool2d(relu2_2, kernel_size=(2L, 2L), stride=(2L, 2L), padding=(0L,), ceil_mode=True)
conv3_1_pad = F.pad(pool2, (1L, 1L, 1L, 1L)) # conv3_1_pad = F.pad(pool2, (1L, 1L, 1L, 1L))
conv3_1 = vgg19.conv3_1(conv3_1_pad) # conv3_1 = vgg19.conv3_1(conv3_1_pad)
relu3_1 = F.relu(conv3_1) # relu3_1 = F.relu(conv3_1)
conv3_2_pad = F.pad(relu3_1, (1L, 1L, 1L, 1L)) # conv3_2_pad = F.pad(relu3_1, (1L, 1L, 1L, 1L))
conv3_2 = vgg19.conv3_2(conv3_2_pad) # conv3_2 = vgg19.conv3_2(conv3_2_pad)
relu3_2 = F.relu(conv3_2) # relu3_2 = F.relu(conv3_2)
conv3_3_pad = F.pad(relu3_2, (1L, 1L, 1L, 1L)) # conv3_3_pad = F.pad(relu3_2, (1L, 1L, 1L, 1L))
conv3_3 = vgg19.conv3_3(conv3_3_pad) # conv3_3 = vgg19.conv3_3(conv3_3_pad)
relu3_3 = F.relu(conv3_3) # relu3_3 = F.relu(conv3_3)
conv3_4_pad = F.pad(relu3_3, (1L, 1L, 1L, 1L)) # conv3_4_pad = F.pad(relu3_3, (1L, 1L, 1L, 1L))
conv3_4 = vgg19.conv3_4(conv3_4_pad) # conv3_4 = vgg19.conv3_4(conv3_4_pad)
relu3_4 = F.relu(conv3_4) # relu3_4 = F.relu(conv3_4)
pool3 = F.max_pool2d(relu3_4, kernel_size=(2L, 2L), stride=(2L, 2L), padding=(0L,), ceil_mode=True) # pool3 = F.max_pool2d(relu3_4, kernel_size=(2L, 2L), stride=(2L, 2L), padding=(0L,), ceil_mode=True)
conv4_1_pad = F.pad(pool3, (1L, 1L, 1L, 1L)) # conv4_1_pad = F.pad(pool3, (1L, 1L, 1L, 1L))
conv4_1 = vgg19.conv4_1(conv4_1_pad) # conv4_1 = vgg19.conv4_1(conv4_1_pad)
relu4_1 = F.relu(conv4_1) # relu4_1 = F.relu(conv4_1)
conv4_2_pad = F.pad(relu4_1, (1L, 1L, 1L, 1L)) # conv4_2_pad = F.pad(relu4_1, (1L, 1L, 1L, 1L))
conv4_2 = vgg19.conv4_2(conv4_2_pad) # conv4_2 = vgg19.conv4_2(conv4_2_pad)
relu4_2 = F.relu(conv4_2) # relu4_2 = F.relu(conv4_2)
conv4_3_pad = F.pad(relu4_2, (1L, 1L, 1L, 1L)) # conv4_3_pad = F.pad(relu4_2, (1L, 1L, 1L, 1L))
conv4_3 = vgg19.conv4_3(conv4_3_pad) # conv4_3 = vgg19.conv4_3(conv4_3_pad)
relu4_3 = F.relu(conv4_3) # relu4_3 = F.relu(conv4_3)
conv4_4_pad = F.pad(relu4_3, (1L, 1L, 1L, 1L)) # conv4_4_pad = F.pad(relu4_3, (1L, 1L, 1L, 1L))
conv4_4 = vgg19.conv4_4(conv4_4_pad) # conv4_4 = vgg19.conv4_4(conv4_4_pad)
relu4_4 = F.relu(conv4_4) # relu4_4 = F.relu(conv4_4)
pool4 = F.max_pool2d(relu4_4, kernel_size=(2L, 2L), stride=(2L, 2L), padding=(0L,), ceil_mode=True) # pool4 = F.max_pool2d(relu4_4, kernel_size=(2L, 2L), stride=(2L, 2L), padding=(0L,), ceil_mode=True)
conv5_1_pad = F.pad(pool4, (1L, 1L, 1L, 1L)) # conv5_1_pad = F.pad(pool4, (1L, 1L, 1L, 1L))
conv5_1 = vgg19.conv5_1(conv5_1_pad) # conv5_1 = vgg19.conv5_1(conv5_1_pad)
relu5_1 = F.relu(conv5_1) # relu5_1 = F.relu(conv5_1)
conv5_2_pad = F.pad(relu5_1, (1L, 1L, 1L, 1L)) # conv5_2_pad = F.pad(relu5_1, (1L, 1L, 1L, 1L))
conv5_2 = vgg19.conv5_2(conv5_2_pad) # conv5_2 = vgg19.conv5_2(conv5_2_pad)
relu5_2 = F.relu(conv5_2) # relu5_2 = F.relu(conv5_2)
conv5_3_pad = F.pad(relu5_2, (1L, 1L, 1L, 1L)) # conv5_3_pad = F.pad(relu5_2, (1L, 1L, 1L, 1L))
conv5_3 = vgg19.conv5_3(conv5_3_pad) # conv5_3 = vgg19.conv5_3(conv5_3_pad)
relu5_3 = F.relu(conv5_3) # relu5_3 = F.relu(conv5_3)
conv5_4_pad = F.pad(relu5_3, (1L, 1L, 1L, 1L)) # conv5_4_pad = F.pad(relu5_3, (1L, 1L, 1L, 1L))
conv5_4 = vgg19.conv5_4(conv5_4_pad) # conv5_4 = vgg19.conv5_4(conv5_4_pad)
relu5_4 = F.relu(conv5_4) # relu5_4 = F.relu(conv5_4)
pool5 = F.max_pool2d(relu5_4, kernel_size=(2L, 2L), stride=(2L, 2L), padding=(0L,), ceil_mode=True) # pool5 = F.max_pool2d(relu5_4, kernel_size=(2L, 2L), stride=(2L, 2L), padding=(0L,), ceil_mode=True)
fc6_0 = pool5.view(pool5.size(0), -1) # fc6_0 = pool5.view(pool5.size(0), -1)
imageVisual(conv1_1, "conv1_1", 8) # imageVisual(conv1_1, "conv1_1", 8)
imageVisual(conv1_2, 'conv1_2', 8) # imageVisual(conv1_2, 'conv1_2', 8)
imageVisual(conv2_1, "conv2_1", 16) # imageVisual(conv2_1, "conv2_1", 16)
imageVisual(conv2_2, "conv2_2", 16) # imageVisual(conv2_2, "conv2_2", 16)
imageVisual(conv3_1, "conv3_1", 16) # imageVisual(conv3_1, "conv3_1", 16)
imageVisual(conv3_2, "conv3_2", 16) # imageVisual(conv3_2, "conv3_2", 16)
imageVisual(conv3_3, "conv3_3", 16) # imageVisual(conv3_3, "conv3_3", 16)
imageVisual(conv3_4, "conv3_4", 16) # imageVisual(conv3_4, "conv3_4", 16)
imageVisual(conv4_1, "conv4_1", 32) # imageVisual(conv4_1, "conv4_1", 32)
imageVisual(conv4_2, "conv4_2", 32) # imageVisual(conv4_2, "conv4_2", 32)
imageVisual(conv4_3, "conv4_3", 32) # imageVisual(conv4_3, "conv4_3", 32)
imageVisual(conv4_4, "conv4_4", 32) # imageVisual(conv4_4, "conv4_4", 32)
imageVisual(conv5_1, "conv5_1", 32) # imageVisual(conv5_1, "conv5_1", 32)
imageVisual(conv5_2, "conv5_2", 32) # imageVisual(conv5_2, "conv5_2", 32)
imageVisual(conv5_3, "conv5_3", 32) # imageVisual(conv5_3, "conv5_3", 32)
imageVisual(conv5_4, "conv5_4", 32) # imageVisual(conv5_4, "conv5_4", 32)
weightVisual(vgg19.conv1_1, "conv1_1") # weightVisual(vgg19.conv1_1, "conv1_1")
weightVisual(vgg19.conv1_2, 'conv1_2') # weightVisual(vgg19.conv1_2, 'conv1_2')
weightVisual(vgg19.conv2_1, "conv2_1") # weightVisual(vgg19.conv2_1, "conv2_1")
weightVisual(vgg19.conv2_2, "conv2_2") # weightVisual(vgg19.conv2_2, "conv2_2")
weightVisual(vgg19.conv3_1, "conv3_1") # weightVisual(vgg19.conv3_1, "conv3_1")
weightVisual(vgg19.conv3_2, "conv3_2") # weightVisual(vgg19.conv3_2, "conv3_2")
weightVisual(vgg19.conv3_3, "conv3_3") # weightVisual(vgg19.conv3_3, "conv3_3")
weightVisual(vgg19.conv3_4, "conv3_4") # weightVisual(vgg19.conv3_4, "conv3_4")
weightVisual(vgg19.conv4_1, "conv4_1") # weightVisual(vgg19.conv4_1, "conv4_1")
weightVisual(vgg19.conv4_2, "conv4_2") # weightVisual(vgg19.conv4_2, "conv4_2")
weightVisual(vgg19.conv4_3, "conv4_3") # weightVisual(vgg19.conv4_3, "conv4_3")
weightVisual(vgg19.conv4_4, "conv4_4") # weightVisual(vgg19.conv4_4, "conv4_4")
weightVisual(vgg19.conv5_1, "conv5_1") # weightVisual(vgg19.conv5_1, "conv5_1")
weightVisual(vgg19.conv5_2, "conv5_2") # weightVisual(vgg19.conv5_2, "conv5_2")
weightVisual(vgg19.conv5_3, "conv5_3") # weightVisual(vgg19.conv5_3, "conv5_3")
weightVisual(vgg19.conv5_4, "conv5_4") # weightVisual(vgg19.conv5_4, "conv5_4")
# endregion # # endregion

View File

@ -1,17 +1,13 @@
# from __future__ import print_function
import os import os
import torch import torch
import torchvision import torchvision
from torchvision import datasets, transforms from torchvision import datasets, transforms
import torchvision.models as models import torchvision.models as models
import numpy as np import numpy as np
from torch.utils.data import Dataset, DataLoader from torch.utils.data import Dataset, DataLoader, Subset
import random import random
def MNIST(batchsize=8, num_workers=0, shuffle=False): def MNIST(batchsize=8, num_workers=0, shuffle=False):
CurrentPath = os.path.split(os.path.realpath(__file__))[0]+"/" CurrentPath = os.path.split(os.path.realpath(__file__))[0]+"/"
train_loader = torch.utils.data.DataLoader( train_loader = torch.utils.data.DataLoader(
@ -46,23 +42,24 @@ def Cifar10(batchsize=8, num_workers=0, shuffle=False):
return train_loader, test_loader return train_loader, test_loader
def Cifar10Mono(batchsize=8, num_workers=0, shuffle=False): def Cifar10Mono(batchsize=8, num_workers=0, shuffle=False, trainsize=0):
CurrentPath = os.path.split(os.path.realpath(__file__))[0]+"/" CurrentPath = os.path.split(os.path.realpath(__file__))[0]+"/"
dataset = datasets.CIFAR10(root=CurrentPath+'../Dataset/', train=True, download=True,
transform=transforms.Compose([
transforms.Grayscale(),
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
if trainsize == 0:
trainsize = dataset.data.shape[0]
train_loader = torch.utils.data.DataLoader( train_loader = torch.utils.data.DataLoader(
datasets.CIFAR10(root=CurrentPath+'../Dataset/', train=True, download=True, Subset(dataset, range(0, trainsize)), batch_size=batchsize, shuffle=shuffle, num_workers=num_workers, drop_last=True)
transform=transforms.Compose([
transforms.Grayscale(),
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])), batch_size=batchsize, shuffle=shuffle, num_workers=num_workers, drop_last=True)
test_loader = torch.utils.data.DataLoader( test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10(root=CurrentPath+'../Dataset/', train=False, transform=transforms.Compose([ datasets.CIFAR10(root=CurrentPath+'../Dataset/', train=False, transform=transforms.Compose([
transforms.Grayscale(), transforms.Grayscale(),
transforms.ToTensor(), transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,)) transforms.Normalize((0.1307,), (0.3081,))
])), batch_size=batchsize, shuffle=shuffle, num_workers=num_workers, drop_last=True) ])), batch_size=batchsize, shuffle=shuffle, num_workers=num_workers, drop_last=True)
return train_loader, test_loader return train_loader, test_loader
def RandomMnist(batchsize=8, num_workers=0, shuffle=False, style=""): def RandomMnist(batchsize=8, num_workers=0, shuffle=False, style=""):
@ -124,6 +121,7 @@ def RandomMnist(batchsize=8, num_workers=0, shuffle=False, style=""):
transforms.RandomRotation(30), transforms.RandomRotation(30),
transforms.RandomResizedCrop(28), transforms.RandomResizedCrop(28),
transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])) transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]))
train_loader = torch.utils.data.DataLoader(train_data, train_loader = torch.utils.data.DataLoader(train_data,
batch_size=batchsize, batch_size=batchsize,
shuffle=shuffle, shuffle=shuffle,

View File

@ -11,11 +11,13 @@ import os
import utils as utils import utils as utils
def train(model, train_loader, optimizer, epoch=0, deviceid=[0]): def train(model, train_loader, optimizer, epoch=0):
model.train() model.train()
batchsize = int(train_loader.sampler.num_samples /
train_loader.batch_size / 5)+1
for batch_idx, (data, target) in enumerate(train_loader): for batch_idx, (data, target) in enumerate(train_loader):
data = utils.SetDevice(data, deviceid) data = utils.SetDevice(data)
target = utils.SetDevice(target, deviceid) target = utils.SetDevice(target)
optimizer.zero_grad() optimizer.zero_grad()
output = model(data) output = model(data)
@ -23,7 +25,7 @@ def train(model, train_loader, optimizer, epoch=0, deviceid=[0]):
loss.backward() loss.backward()
optimizer.step() optimizer.step()
if batch_idx % 100 == 0 and batch_idx > 0: if batch_idx % batchsize == 0 and batch_idx > 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}' print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'
.format(epoch, batch_idx * len(data), .format(epoch, batch_idx * len(data),
len(train_loader.dataset), len(train_loader.dataset),
@ -32,14 +34,14 @@ def train(model, train_loader, optimizer, epoch=0, deviceid=[0]):
loss.item())) loss.item()))
def test(model, test_loader, deviceid=[0]): def test(model, test_loader):
with torch.no_grad(): with torch.no_grad():
model.eval() model.eval()
test_loss = 0 test_loss = 0
correct = 0 correct = 0
for data, target in test_loader: for data, target in test_loader:
data = utils.SetDevice(data, deviceid) data = utils.SetDevice(data)
target = utils.SetDevice(target, deviceid) target = utils.SetDevice(target)
output = model(data) output = model(data)
# sum up batch loss # sum up batch loss
@ -49,9 +51,7 @@ def test(model, test_loader, deviceid=[0]):
correct += pred.eq(target.view_as(pred)).sum().item() correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset) test_loss /= len(test_loader.dataset)
accu = 100. * correct / len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n' print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'
.format(test_loss, correct, .format(test_loss, correct, len(test_loader.dataset), accu))
len( return accu
test_loader.dataset),
100. * correct / len(
test_loader.dataset)))

64
tools/WebVisual.py Normal file
View File

@ -0,0 +1,64 @@
from visdom import Visdom
import random
import numpy as np
def InitVisdom():
viz = Visdom()
assert viz.check_connection()
viz.close()
class Line():
def __init__(self,name,size):
super(Line, self).__init__()
self.name=name
self.size=size
def __init__(self):
super(Line, self).__init__()
self.name=str(random.random())
self.size=0
def __init__(self,name):
super(Line, self).__init__()
self.name=name
self.size=0
class LineWin():
def __init__(self):
super(LineWin, self).__init__()
self.viz = Visdom()
self.name = str(random.random())
self.win = self.viz.line(
X=np.array([0]),
Y=np.array([0]),
name=self.name
)
self.data = np.array([])
def AppendLine(self,y):
if not isinstance(y,list):
y = [y]
linename = str(random.random())
self.viz.line(
X=np.array(range(len(y))),
Y=np.array(y),
opts=dict(markercolor=np.array([50]),
markersymbol='dot',),
win=self.win,
update="new",
name=linename,
)
return Line(linename,len(y))
def AppendData(self,line, y):
if not isinstance(y,list):
y = [y]
self.viz.line(
X=np.array(range(line.size, line.size+len(y))),
Y=np.array(y),
win=self.win,
update="append",
name=line.name
)
line.size = line.size + len(y)