from __future__ import print_function import os import sys import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchvision from torchvision import datasets, transforms import torchvision.models as models import matplotlib.pyplot as plt import numpy as np CurrentPath = os.path.split(os.path.realpath(__file__))[0]+"/" sys.path.append(CurrentPath+'../tools') sys.path.append(CurrentPath+'../') from tools import UniModule class Net535(UniModule.ModuleBase): def __init__(self): super(Net535, self).__init__() layers = [] layers += [nn.Conv2d(1, 8, kernel_size=5,bias=False),nn.MaxPool2d(kernel_size=2, stride=2),nn.Sigmoid()] layers += [nn.Conv2d(8, 8, kernel_size=3,bias=False),nn.MaxPool2d(kernel_size=2, stride=2),nn.Sigmoid()] layers += [nn.Conv2d(8, 10, kernel_size=5,bias=False)] self.features = nn.Sequential(*layers) def forward(self, x): x = self.features(x) x = x.view(-1, 1*10) return F.log_softmax(x, dim=1) class Net5Grad35(UniModule.ModuleBase): def __init__(self): super(Net5Grad35, self).__init__() layers = [] layers += [nn.Conv2d(1, 8, kernel_size=5,bias=False),nn.MaxPool2d(kernel_size=2, stride=2),nn.Sigmoid()] layers += [nn.Conv2d(8, 8, kernel_size=3,bias=False),nn.MaxPool2d(kernel_size=2, stride=2),nn.Sigmoid()] layers += [nn.Conv2d(8, 10, kernel_size=5,bias=False)] self.features = nn.Sequential(*layers) self.SetConvRequiresGrad(0,False) def forward(self, x): x = self.features(x) x = x.view(-1, 1*10) return F.log_softmax(x, dim=1) class Net3335(UniModule.ModuleBase): def __init__(self): super(Net3335, self).__init__() layers = [] layers += [nn.Conv2d(1, 8, kernel_size=3,bias=False,padding=1),nn.MaxPool2d(kernel_size=2, stride=2),nn.Sigmoid()] layers += [nn.Conv2d(8, 8, kernel_size=3,bias=False),nn.MaxPool2d(kernel_size=2, stride=2),nn.Sigmoid()] layers += [nn.Conv2d(8, 8, kernel_size=3,bias=False),nn.Sigmoid()] layers += [nn.Conv2d(8, 10, kernel_size=5,bias=False)] self.features = nn.Sequential(*layers) def forward(self, x): x = self.features(x) x = x.view(-1, 1*10) return F.log_softmax(x, dim=1) class Net333(UniModule.ModuleBase): def __init__(self): super(Net333, self).__init__() layers = [] layers += [nn.Conv2d(1, 8, kernel_size=3,bias=False),nn.Sigmoid()] layers += [nn.Conv2d(8, 1, kernel_size=3,bias=False),nn.Sigmoid()] layers += [nn.Conv2d(1, 10, kernel_size=3,bias=False)] self.features = nn.Sequential(*layers) def forward(self, x): x = self.features(x) x = x.view(-1, 1*10) return F.log_softmax(x, dim=1) class Net3Grad33(UniModule.ModuleBase): def __init__(self): super(Net3Grad33, self).__init__() layers = [] layers += [nn.Conv2d(1, 8, kernel_size=3,bias=False),nn.Sigmoid()] layers += [nn.Conv2d(8, 1, kernel_size=3,bias=False),nn.Sigmoid()] layers += [nn.Conv2d(1, 10, kernel_size=3,bias=False)] self.features = nn.Sequential(*layers) self.SetConvRequiresGrad(0,False) def forward(self, x): x = self.features(x) x = x.view(-1, 1*10) return F.log_softmax(x, dim=1) class Net3334(UniModule.ModuleBase): def __init__(self): super(Net3334, self).__init__() layers = [] layers += [nn.Conv2d(1, 8, kernel_size=3,bias=False,padding=1),nn.MaxPool2d(kernel_size=2, stride=2),nn.Sigmoid()] layers += [nn.Conv2d(8, 8, kernel_size=3,bias=False),nn.MaxPool2d(kernel_size=2, stride=2),nn.Sigmoid()] layers += [nn.Conv2d(8, 8, kernel_size=3,bias=False),nn.Sigmoid()] layers += [nn.Conv2d(8, 10, kernel_size=4,bias=False)] self.features = nn.Sequential(*layers) def forward(self, x): x = self.features(x) x = x.view(-1, 1*10) return F.log_softmax(x, dim=1) class Net3Grad334(UniModule.ModuleBase): def __init__(self): super(Net3Grad334, self).__init__() layers = [] layers += [nn.Conv2d(1, 8, kernel_size=3,bias=False,padding=1),nn.MaxPool2d(kernel_size=2, stride=2),nn.Sigmoid()] layers += [nn.Conv2d(8, 8, kernel_size=3,bias=False),nn.MaxPool2d(kernel_size=2, stride=2),nn.Sigmoid()] layers += [nn.Conv2d(8, 8, kernel_size=3,bias=False),nn.Sigmoid()] layers += [nn.Conv2d(8, 10, kernel_size=4,bias=False)] self.features = nn.Sequential(*layers) self.SetConvRequiresGrad(0,False) def forward(self, x): x = self.features(x) x = x.view(-1, 1*10) return F.log_softmax(x, dim=1) class Net3335BN(UniModule.ModuleBase): def __init__(self): super(Net3335BN, self).__init__() layers = [] layers += [nn.Conv2d(1, 8, kernel_size=3,bias=False,padding=1),nn.MaxPool2d(kernel_size=2, stride=2),nn.Sigmoid()] layers += [nn.BatchNorm2d(8)] layers += [nn.Conv2d(8, 8, kernel_size=3,bias=False),nn.MaxPool2d(kernel_size=2, stride=2),nn.Sigmoid()] layers += [nn.BatchNorm2d(8)] layers += [nn.Conv2d(8, 8, kernel_size=3,bias=False),nn.Sigmoid()] layers += [nn.BatchNorm2d(8)] layers += [nn.Conv2d(8, 10, kernel_size=5,bias=False)] self.features = nn.Sequential(*layers) def forward(self, x): x = self.features(x) x = x.view(-1, 1*10) return F.log_softmax(x, dim=1) class Net3Grad335(UniModule.ModuleBase): def __init__(self): super(Net3Grad335, self).__init__() layers = [] layers += [nn.Conv2d(1, 8, kernel_size=3,bias=False,padding=1),nn.MaxPool2d(kernel_size=2, stride=2),nn.Sigmoid()] layers += [nn.Conv2d(8, 8, kernel_size=3,bias=False),nn.MaxPool2d(kernel_size=2, stride=2),nn.Sigmoid()] layers += [nn.Conv2d(8, 8, kernel_size=3,bias=False),nn.Sigmoid()] layers += [nn.Conv2d(8, 10, kernel_size=5,bias=False)] self.features = nn.Sequential(*layers) self.SetConvRequiresGrad(0,False) def forward(self, x): x = self.features(x) x = x.view(-1, 1*10) return F.log_softmax(x, dim=1) class Net31535(UniModule.ModuleBase): def __init__(self): super(Net31535, self).__init__() layers = [] layers += [nn.Conv2d(1, 8, kernel_size=[1,3],bias=False,padding=[0,1]),nn.Sigmoid()] layers += [nn.Conv2d(8, 8, kernel_size=5,bias=False),nn.MaxPool2d(kernel_size=2, stride=2),nn.Sigmoid()] layers += [nn.Conv2d(8, 8, kernel_size=3,bias=False),nn.MaxPool2d(kernel_size=2, stride=2),nn.Sigmoid()] layers += [nn.Conv2d(8, 10, kernel_size=5,bias=False)] self.features = nn.Sequential(*layers) def forward(self, x): x = self.features(x) x = x.view(-1, 1*10) return F.log_softmax(x, dim=1)