537 lines
22 KiB
Python
537 lines
22 KiB
Python
from __future__ import print_function
|
|
|
|
import os
|
|
import sys
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.optim as optim
|
|
import torchvision
|
|
from torchvision import datasets, transforms
|
|
import torchvision.models as models
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import struct
|
|
from struct import Struct
|
|
|
|
|
|
CurrentPath = os.path.split(os.path.realpath(__file__))[0]+"/"
|
|
|
|
|
|
|
|
|
|
resnet50 = models.resnet50(pretrained=True)
|
|
# torch.save(resnet50, CurrentPath+'params.pth')
|
|
resnet50 = torch.load(CurrentPath+'params.pth')
|
|
print("===========================")
|
|
print("===========================")
|
|
print("===========================")
|
|
print(resnet50)
|
|
print("===========================")
|
|
print("===========================")
|
|
print("===========================")
|
|
|
|
|
|
ResNet50 = {
|
|
"conv1": "Conv2d",
|
|
"bn1": "BatchNorm2d",
|
|
"relu": "ReLU",
|
|
"maxpool": "MaxPool2d",
|
|
"layer1": {
|
|
"_modules": {
|
|
"0": {
|
|
"conv1": "Conv2d",
|
|
"bn1": "BatchNorm2d",
|
|
"conv2": "Conv2d",
|
|
"bn2": "BatchNorm2d",
|
|
"conv3": "Conv2d",
|
|
"bn3": "BatchNorm2d",
|
|
"relu": "ReLU",
|
|
"downsample": {
|
|
"_modules": {
|
|
"0": "Conv2d",
|
|
"1": "BatchNorm2d",
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"layer2": {
|
|
"_modules": {
|
|
"0": {
|
|
"conv1": "Conv2d",
|
|
"bn1": "BatchNorm2d",
|
|
"conv2": "Conv2d",
|
|
"bn2": "BatchNorm2d",
|
|
"conv3": "Conv2d",
|
|
"bn3": "BatchNorm2d",
|
|
"relu": "ReLU",
|
|
"downsample": {
|
|
"_modules": {
|
|
"0": "Conv2d",
|
|
"1": "BatchNorm2d",
|
|
}
|
|
}
|
|
},
|
|
"1": {
|
|
"conv1": "Conv2d",
|
|
"bn1": "BatchNorm2d",
|
|
"conv2": "Conv2d",
|
|
"bn2": "BatchNorm2d",
|
|
"conv3": "Conv2d",
|
|
"bn3": "BatchNorm2d",
|
|
"relu": "ReLU",
|
|
},
|
|
"2": {
|
|
"conv1": "Conv2d",
|
|
"bn1": "BatchNorm2d",
|
|
"conv2": "Conv2d",
|
|
"bn2": "BatchNorm2d",
|
|
"conv3": "Conv2d",
|
|
"bn3": "BatchNorm2d",
|
|
"relu": "ReLU",
|
|
},
|
|
"3": {
|
|
"conv1": "Conv2d",
|
|
"bn1": "BatchNorm2d",
|
|
"conv2": "Conv2d",
|
|
"bn2": "BatchNorm2d",
|
|
"conv3": "Conv2d",
|
|
"bn3": "BatchNorm2d",
|
|
"relu": "ReLU",
|
|
}
|
|
}
|
|
},
|
|
"layer3": {
|
|
"_modules": {
|
|
"0": {
|
|
"conv1": "Conv2d",
|
|
"bn1": "BatchNorm2d",
|
|
"conv2": "Conv2d",
|
|
"bn2": "BatchNorm2d",
|
|
"conv3": "Conv2d",
|
|
"bn3": "BatchNorm2d",
|
|
"relu": "ReLU",
|
|
"downsample": {
|
|
"_modules": {
|
|
"0": "Conv2d",
|
|
"1": "BatchNorm2d",
|
|
}
|
|
}
|
|
},
|
|
"1": {
|
|
"conv1": "Conv2d",
|
|
"bn1": "BatchNorm2d",
|
|
"conv2": "Conv2d",
|
|
"bn2": "BatchNorm2d",
|
|
"conv3": "Conv2d",
|
|
"bn3": "BatchNorm2d",
|
|
"relu": "ReLU",
|
|
},
|
|
"2": {
|
|
"conv1": "Conv2d",
|
|
"bn1": "BatchNorm2d",
|
|
"conv2": "Conv2d",
|
|
"bn2": "BatchNorm2d",
|
|
"conv3": "Conv2d",
|
|
"bn3": "BatchNorm2d",
|
|
"relu": "ReLU",
|
|
},
|
|
"3": {
|
|
"conv1": "Conv2d",
|
|
"bn1": "BatchNorm2d",
|
|
"conv2": "Conv2d",
|
|
"bn2": "BatchNorm2d",
|
|
"conv3": "Conv2d",
|
|
"bn3": "BatchNorm2d",
|
|
"relu": "ReLU",
|
|
},
|
|
"4": {
|
|
"conv1": "Conv2d",
|
|
"bn1": "BatchNorm2d",
|
|
"conv2": "Conv2d",
|
|
"bn2": "BatchNorm2d",
|
|
"conv3": "Conv2d",
|
|
"bn3": "BatchNorm2d",
|
|
"relu": "ReLU",
|
|
},
|
|
"5": {
|
|
"conv1": "Conv2d",
|
|
"bn1": "BatchNorm2d",
|
|
"conv2": "Conv2d",
|
|
"bn2": "BatchNorm2d",
|
|
"conv3": "Conv2d",
|
|
"bn3": "BatchNorm2d",
|
|
"relu": "ReLU",
|
|
}
|
|
}
|
|
},
|
|
"layer4": {
|
|
"_modules": {
|
|
"0": {
|
|
"conv1": "Conv2d",
|
|
"bn1": "BatchNorm2d",
|
|
"conv2": "Conv2d",
|
|
"bn2": "BatchNorm2d",
|
|
"conv3": "Conv2d",
|
|
"bn3": "BatchNorm2d",
|
|
"relu": "ReLU",
|
|
"downsample": {
|
|
"_modules": {
|
|
"0": "Conv2d",
|
|
"1": "BatchNorm2d",
|
|
}
|
|
}
|
|
},
|
|
"1": {
|
|
"conv1": "Conv2d",
|
|
"bn1": "BatchNorm2d",
|
|
"conv2": "Conv2d",
|
|
"bn2": "BatchNorm2d",
|
|
"conv3": "Conv2d",
|
|
"bn3": "BatchNorm2d",
|
|
"relu": "ReLU",
|
|
},
|
|
"2": {
|
|
"conv1": "Conv2d",
|
|
"bn1": "BatchNorm2d",
|
|
"conv2": "Conv2d",
|
|
"bn2": "BatchNorm2d",
|
|
"conv3": "Conv2d",
|
|
"bn3": "BatchNorm2d",
|
|
"relu": "ReLU",
|
|
}
|
|
}
|
|
},
|
|
"avgpool": "AdaptiveAvgPool2d",
|
|
"fc": "Linear"
|
|
}
|
|
|
|
|
|
weightfile = open(CurrentPath+'ResNet50Weight.cc', 'w')
|
|
binaryfile = open(CurrentPath+'ResNet50Weight.bin', 'wb')
|
|
currentbyte = 0
|
|
|
|
|
|
def printDick(d, head, obj):
|
|
global currentbyte
|
|
global binaryfile
|
|
strg = ""
|
|
for item in d:
|
|
if type(d[item]).__name__ == 'dict':
|
|
objsub = getattr(obj, item, '')
|
|
if objsub == '':
|
|
objsub = obj[item]
|
|
strg = strg + printDick(d[item], head+"_"+item, objsub)
|
|
else:
|
|
objsub = getattr(obj, item, '')
|
|
if objsub == '':
|
|
objsub = obj[item]
|
|
if d[item] == "Conv2d":
|
|
strg = strg + "int "+head+"_"+item+"_weight[]={"
|
|
array = objsub.weight.cpu().detach().numpy().reshape(-1)
|
|
|
|
strg += str(currentbyte) + ","
|
|
for a in array:
|
|
bs = struct.pack("f", a)
|
|
binaryfile.write(bs)
|
|
currentbyte = currentbyte+1
|
|
strg += str(currentbyte-1) + ","
|
|
strg = strg + "};\n"
|
|
if d[item] == "BatchNorm2d":
|
|
strg = strg + "int "+head+"_"+item+"_running_mean[]={"
|
|
array = objsub.running_mean.cpu().detach().numpy().reshape(-1)
|
|
strg += str(currentbyte) + ","
|
|
for a in array:
|
|
bs = struct.pack("f", a)
|
|
binaryfile.write(bs)
|
|
currentbyte = currentbyte+1
|
|
strg += str(currentbyte-1) + ","
|
|
strg = strg + "};\n"
|
|
|
|
strg = strg + "int "+head+"_"+item+"_running_var[]={"
|
|
array = objsub.running_var.cpu().detach().numpy().reshape(-1)
|
|
strg += str(currentbyte) + ","
|
|
for a in array:
|
|
bs = struct.pack("f", a)
|
|
binaryfile.write(bs)
|
|
currentbyte = currentbyte+1
|
|
strg += str(currentbyte-1) + ","
|
|
strg = strg + "};\n"
|
|
|
|
strg = strg + "int "+head+"_"+item+"_weight[]={"
|
|
array = objsub.weight.cpu().detach().numpy().reshape(-1)
|
|
strg += str(currentbyte) + ","
|
|
for a in array:
|
|
bs = struct.pack("f", a)
|
|
binaryfile.write(bs)
|
|
currentbyte = currentbyte+1
|
|
strg += str(currentbyte-1) + ","
|
|
strg = strg + "};\n"
|
|
|
|
strg = strg + "int "+head+"_"+item+"_bias[]={"
|
|
array = objsub.bias.cpu().detach().numpy().reshape(-1)
|
|
strg += str(currentbyte) + ","
|
|
for a in array:
|
|
bs = struct.pack("f", a)
|
|
binaryfile.write(bs)
|
|
currentbyte = currentbyte+1
|
|
strg += str(currentbyte-1) + ","
|
|
strg = strg + "};\n"
|
|
|
|
if d[item] == "Linear":
|
|
strg = strg + "int "+head+"_"+item+"_weight[]={"
|
|
array = objsub.weight.cpu().detach().numpy().reshape(-1)
|
|
strg += str(currentbyte) + ","
|
|
for a in array:
|
|
bs = struct.pack("f", a)
|
|
binaryfile.write(bs)
|
|
currentbyte = currentbyte+1
|
|
strg += str(currentbyte-1) + ","
|
|
strg = strg + "};\n"
|
|
|
|
strg = strg + "int "+head+"_"+item+"_bias[]={"
|
|
array = objsub.bias.cpu().detach().numpy().reshape(-1)
|
|
strg += str(currentbyte) + ","
|
|
for a in array:
|
|
bs = struct.pack("f", a)
|
|
binaryfile.write(bs)
|
|
currentbyte = currentbyte+1
|
|
strg += str(currentbyte-1) + ","
|
|
strg = strg + "};\n"
|
|
|
|
return strg
|
|
|
|
strg = ''
|
|
strg = printDick(ResNet50, "RN50", resnet50)
|
|
|
|
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
|
std=[0.229, 0.224, 0.225])
|
|
|
|
val_loader = torch.utils.data.DataLoader(
|
|
datasets.ImageFolder(CurrentPath+'ImageNet/', transforms.Compose([
|
|
transforms.Resize(256),
|
|
transforms.CenterCrop(224),
|
|
transforms.ToTensor(),
|
|
normalize,
|
|
])),
|
|
batch_size=1, shuffle=False,
|
|
num_workers=1, pin_memory=True)
|
|
|
|
|
|
for batch_idx, (data, target) in enumerate(val_loader):
|
|
|
|
strg = strg + "int input_"+str(batch_idx)+"[]={"
|
|
array = data.cpu().detach().numpy().reshape(-1)
|
|
strg += str(currentbyte) + ","
|
|
for a in array:
|
|
bs = struct.pack("f", a)
|
|
binaryfile.write(bs)
|
|
currentbyte = currentbyte+1
|
|
strg += str(currentbyte-1) + ","
|
|
strg = strg + "};\n"
|
|
|
|
out = resnet50(data)
|
|
|
|
strg = strg + "int output_"+str(batch_idx)+"[]={"
|
|
array = out.cpu().detach().numpy().reshape(-1)
|
|
strg += str(currentbyte) + ","
|
|
for a in array:
|
|
bs = struct.pack("f", a)
|
|
binaryfile.write(bs)
|
|
currentbyte = currentbyte+1
|
|
strg += str(currentbyte-1) + ","
|
|
strg = strg + "};\n"
|
|
|
|
weightfile.write(strg)
|
|
|
|
binaryfile.close()
|
|
weightfile.close()
|
|
|
|
|
|
print(strg)
|
|
|
|
print("===========================")
|
|
print("===========================")
|
|
print("===========================")
|
|
|
|
|
|
|
|
|
|
# ResNet(
|
|
# (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
|
|
# (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (relu): ReLU(inplace=True)
|
|
# (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
|
|
# (layer1): Sequential(
|
|
# (0): Bottleneck(
|
|
# (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
|
# (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
|
# (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
|
# (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (relu): ReLU(inplace=True)
|
|
# (downsample): Sequential(
|
|
# (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
|
# (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# )
|
|
# )
|
|
# (1): Bottleneck(
|
|
# (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
|
# (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
|
# (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
|
# (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (relu): ReLU(inplace=True)
|
|
# )
|
|
# (2): Bottleneck(
|
|
# (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
|
# (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
|
# (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
|
# (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (relu): ReLU(inplace=True)
|
|
# )
|
|
# )
|
|
# (layer2): Sequential(
|
|
# (0): Bottleneck(
|
|
# (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
|
# (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
|
|
# (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
|
# (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (relu): ReLU(inplace=True)
|
|
# (downsample): Sequential(
|
|
# (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
|
|
# (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# )
|
|
# )
|
|
# (1): Bottleneck(
|
|
# (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
|
# (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
|
# (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
|
# (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (relu): ReLU(inplace=True)
|
|
# )
|
|
# (2): Bottleneck(
|
|
# (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
|
# (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
|
# (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
|
# (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (relu): ReLU(inplace=True)
|
|
# )
|
|
# (3): Bottleneck(
|
|
# (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
|
# (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
|
# (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
|
# (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (relu): ReLU(inplace=True)
|
|
# )
|
|
# )
|
|
# (layer3): Sequential(
|
|
# (0): Bottleneck(
|
|
# (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
|
# (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
|
|
# (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
|
# (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (relu): ReLU(inplace=True)
|
|
# (downsample): Sequential(
|
|
# (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
|
|
# (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# )
|
|
# )
|
|
# (1): Bottleneck(
|
|
# (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
|
# (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
|
# (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
|
# (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (relu): ReLU(inplace=True)
|
|
# )
|
|
# (2): Bottleneck(
|
|
# (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
|
# (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
|
# (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
|
# (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (relu): ReLU(inplace=True)
|
|
# )
|
|
# (3): Bottleneck(
|
|
# (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
|
# (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
|
# (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
|
# (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (relu): ReLU(inplace=True)
|
|
# )
|
|
# (4): Bottleneck(
|
|
# (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
|
# (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
|
# (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
|
# (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (relu): ReLU(inplace=True)
|
|
# )
|
|
# (5): Bottleneck(
|
|
# (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
|
# (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
|
# (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
|
# (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (relu): ReLU(inplace=True)
|
|
# )
|
|
# )
|
|
# (layer4): Sequential(
|
|
# (0): Bottleneck(
|
|
# (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
|
# (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
|
|
# (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
|
# (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (relu): ReLU(inplace=True)
|
|
# (downsample): Sequential(
|
|
# (0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
|
|
# (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# )
|
|
# )
|
|
# (1): Bottleneck(
|
|
# (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
|
# (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
|
# (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
|
# (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (relu): ReLU(inplace=True)
|
|
# )
|
|
# (2): Bottleneck(
|
|
# (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
|
# (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
|
# (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
|
# (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
|
# (relu): ReLU(inplace=True)
|
|
# )
|
|
# )
|
|
# (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
|
|
# (fc): Linear(in_features=2048, out_features=1000, bias=True)
|
|
# )
|