witnn/RBM/mnist_example.py

96 lines
2.7 KiB
Python
Executable File

import os
import numpy as np
from sklearn.linear_model import LogisticRegression
import torch
import torchvision.datasets
import torchvision.models
import torchvision.transforms
from rbm import RBM
########## CONFIGURATION ##########
BATCH_SIZE = 64
VISIBLE_UNITS = 784 # 28 x 28 images
HIDDEN_UNITS = 128
CD_K = 2
EPOCHS = 100
DATA_FOLDER = os.path.split(os.path.realpath(__file__))[0]+'/../Dataset/'
print("Dataset Path :" + DATA_FOLDER)
CUDA = torch.cuda.is_available()
CUDA_DEVICE = 0
if CUDA:
torch.cuda.set_device(CUDA_DEVICE)
########## LOADING DATASET ##########
print('Loading dataset...')
train_dataset = torchvision.datasets.MNIST(root=DATA_FOLDER, train=True, transform=torchvision.transforms.ToTensor(), download=True)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=BATCH_SIZE)
test_dataset = torchvision.datasets.MNIST(root=DATA_FOLDER, train=False, transform=torchvision.transforms.ToTensor(), download=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=BATCH_SIZE)
########## TRAINING RBM ##########
print('Training RBM...')
rbm = RBM(VISIBLE_UNITS, HIDDEN_UNITS, CD_K, use_cuda=CUDA)
for epoch in range(EPOCHS):
epoch_error = 0.0
for batch, _ in train_loader:
batch = batch.view(len(batch), VISIBLE_UNITS) # flatten input data
if CUDA:
batch = batch.cuda()
batch_error = rbm.contrastive_divergence(batch)
epoch_error += batch_error
print('Epoch Error (epoch=%d): %.4f' % (epoch, epoch_error))
########## EXTRACT FEATURES ##########
print('Extracting features...')
train_features = np.zeros((len(train_dataset), HIDDEN_UNITS))
train_labels = np.zeros(len(train_dataset))
test_features = np.zeros((len(test_dataset), HIDDEN_UNITS))
test_labels = np.zeros(len(test_dataset))
for i, (batch, labels) in enumerate(train_loader):
batch = batch.view(len(batch), VISIBLE_UNITS) # flatten input data
if CUDA:
batch = batch.cuda()
train_features[i*BATCH_SIZE:i*BATCH_SIZE+len(batch)] = rbm.sample_hidden(batch).cpu().numpy()
train_labels[i*BATCH_SIZE:i*BATCH_SIZE+len(batch)] = labels.numpy()
for i, (batch, labels) in enumerate(test_loader):
batch = batch.view(len(batch), VISIBLE_UNITS) # flatten input data
if CUDA:
batch = batch.cuda()
test_features[i*BATCH_SIZE:i*BATCH_SIZE+len(batch)] = rbm.sample_hidden(batch).cpu().numpy()
test_labels[i*BATCH_SIZE:i*BATCH_SIZE+len(batch)] = labels.numpy()
########## CLASSIFICATION ##########
print('Classifying...')
clf = LogisticRegression()
clf.fit(train_features, train_labels)
predictions = clf.predict(test_features)
print('Result: %d/%d' % (sum(predictions == test_labels), test_labels.shape[0]))