342 lines
10 KiB
Python
342 lines
10 KiB
Python
from __future__ import print_function
|
|
|
|
import os
|
|
import sys
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.optim as optim
|
|
import torchvision
|
|
from torchvision import datasets, transforms
|
|
import torchvision.models as models
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import struct
|
|
from struct import Struct
|
|
|
|
|
|
# m = nn.BatchNorm2d(1)
|
|
|
|
# m.weight.data = torch.ones(1)
|
|
# m.bias.data = torch.ones(1)
|
|
# m.running_mean.data = torch.ones(1)*2.0
|
|
# m.running_var.data = torch.zeros(1)
|
|
|
|
# # Without Learnable Parameters
|
|
# # m = nn.BatchNorm2d(1, affine=False)
|
|
# input = torch.ones(1, 1, 4, 4) * 2.0
|
|
# output = m(input)
|
|
# print(output)
|
|
|
|
|
|
CurrentPath = os.path.split(os.path.realpath(__file__))[0]+"/"
|
|
|
|
resnet50 = models.resnet50(pretrained=True)
|
|
|
|
|
|
# torch.save(resnet50, CurrentPath+'params.pth')
|
|
resnet50 = torch.load(CurrentPath+'params.pth')
|
|
resnet50.eval()
|
|
|
|
|
|
print("===========================")
|
|
print("===========================")
|
|
print("===========================")
|
|
print(resnet50)
|
|
print("===========================")
|
|
print("===========================")
|
|
print("===========================")
|
|
|
|
|
|
ResNet50 = {
|
|
"conv1": "Conv2d",
|
|
"bn1": "BatchNorm2d",
|
|
"relu": "ReLU",
|
|
"maxpool": "MaxPool2d",
|
|
"layer1": {
|
|
"_modules": {
|
|
"0": {
|
|
"conv1": "Conv2d",
|
|
"bn1": "BatchNorm2d",
|
|
"conv2": "Conv2d",
|
|
"bn2": "BatchNorm2d",
|
|
"conv3": "Conv2d",
|
|
"bn3": "BatchNorm2d",
|
|
"relu": "ReLU",
|
|
"downsample": {
|
|
"_modules": {
|
|
"0": "Conv2d",
|
|
"1": "BatchNorm2d",
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
"layer2": {
|
|
"_modules": {
|
|
"0": {
|
|
"conv1": "Conv2d",
|
|
"bn1": "BatchNorm2d",
|
|
"conv2": "Conv2d",
|
|
"bn2": "BatchNorm2d",
|
|
"conv3": "Conv2d",
|
|
"bn3": "BatchNorm2d",
|
|
"relu": "ReLU",
|
|
"downsample": {
|
|
"_modules": {
|
|
"0": "Conv2d",
|
|
"1": "BatchNorm2d",
|
|
}
|
|
}
|
|
},
|
|
"1": {
|
|
"conv1": "Conv2d",
|
|
"bn1": "BatchNorm2d",
|
|
"conv2": "Conv2d",
|
|
"bn2": "BatchNorm2d",
|
|
"conv3": "Conv2d",
|
|
"bn3": "BatchNorm2d",
|
|
"relu": "ReLU",
|
|
},
|
|
"2": {
|
|
"conv1": "Conv2d",
|
|
"bn1": "BatchNorm2d",
|
|
"conv2": "Conv2d",
|
|
"bn2": "BatchNorm2d",
|
|
"conv3": "Conv2d",
|
|
"bn3": "BatchNorm2d",
|
|
"relu": "ReLU",
|
|
},
|
|
"3": {
|
|
"conv1": "Conv2d",
|
|
"bn1": "BatchNorm2d",
|
|
"conv2": "Conv2d",
|
|
"bn2": "BatchNorm2d",
|
|
"conv3": "Conv2d",
|
|
"bn3": "BatchNorm2d",
|
|
"relu": "ReLU",
|
|
}
|
|
}
|
|
},
|
|
"layer3": {
|
|
"_modules": {
|
|
"0": {
|
|
"conv1": "Conv2d",
|
|
"bn1": "BatchNorm2d",
|
|
"conv2": "Conv2d",
|
|
"bn2": "BatchNorm2d",
|
|
"conv3": "Conv2d",
|
|
"bn3": "BatchNorm2d",
|
|
"relu": "ReLU",
|
|
"downsample": {
|
|
"_modules": {
|
|
"0": "Conv2d",
|
|
"1": "BatchNorm2d",
|
|
}
|
|
}
|
|
},
|
|
"1": {
|
|
"conv1": "Conv2d",
|
|
"bn1": "BatchNorm2d",
|
|
"conv2": "Conv2d",
|
|
"bn2": "BatchNorm2d",
|
|
"conv3": "Conv2d",
|
|
"bn3": "BatchNorm2d",
|
|
"relu": "ReLU",
|
|
},
|
|
"2": {
|
|
"conv1": "Conv2d",
|
|
"bn1": "BatchNorm2d",
|
|
"conv2": "Conv2d",
|
|
"bn2": "BatchNorm2d",
|
|
"conv3": "Conv2d",
|
|
"bn3": "BatchNorm2d",
|
|
"relu": "ReLU",
|
|
},
|
|
"3": {
|
|
"conv1": "Conv2d",
|
|
"bn1": "BatchNorm2d",
|
|
"conv2": "Conv2d",
|
|
"bn2": "BatchNorm2d",
|
|
"conv3": "Conv2d",
|
|
"bn3": "BatchNorm2d",
|
|
"relu": "ReLU",
|
|
},
|
|
"4": {
|
|
"conv1": "Conv2d",
|
|
"bn1": "BatchNorm2d",
|
|
"conv2": "Conv2d",
|
|
"bn2": "BatchNorm2d",
|
|
"conv3": "Conv2d",
|
|
"bn3": "BatchNorm2d",
|
|
"relu": "ReLU",
|
|
},
|
|
"5": {
|
|
"conv1": "Conv2d",
|
|
"bn1": "BatchNorm2d",
|
|
"conv2": "Conv2d",
|
|
"bn2": "BatchNorm2d",
|
|
"conv3": "Conv2d",
|
|
"bn3": "BatchNorm2d",
|
|
"relu": "ReLU",
|
|
}
|
|
}
|
|
},
|
|
"layer4": {
|
|
"_modules": {
|
|
"0": {
|
|
"conv1": "Conv2d",
|
|
"bn1": "BatchNorm2d",
|
|
"conv2": "Conv2d",
|
|
"bn2": "BatchNorm2d",
|
|
"conv3": "Conv2d",
|
|
"bn3": "BatchNorm2d",
|
|
"relu": "ReLU",
|
|
"downsample": {
|
|
"_modules": {
|
|
"0": "Conv2d",
|
|
"1": "BatchNorm2d",
|
|
}
|
|
}
|
|
},
|
|
"1": {
|
|
"conv1": "Conv2d",
|
|
"bn1": "BatchNorm2d",
|
|
"conv2": "Conv2d",
|
|
"bn2": "BatchNorm2d",
|
|
"conv3": "Conv2d",
|
|
"bn3": "BatchNorm2d",
|
|
"relu": "ReLU",
|
|
},
|
|
"2": {
|
|
"conv1": "Conv2d",
|
|
"bn1": "BatchNorm2d",
|
|
"conv2": "Conv2d",
|
|
"bn2": "BatchNorm2d",
|
|
"conv3": "Conv2d",
|
|
"bn3": "BatchNorm2d",
|
|
"relu": "ReLU",
|
|
}
|
|
}
|
|
},
|
|
"avgpool": "AdaptiveAvgPool2d",
|
|
"fc": "Linear"
|
|
}
|
|
|
|
|
|
weightfile = open(CurrentPath+'ResNet50Weight.cc', 'w')
|
|
binaryfile = open(CurrentPath+'ResNet50Weight.bin', 'wb')
|
|
currentbyte = 0
|
|
|
|
|
|
def genData(name, data, currentbyte, binaryfile, strg):
|
|
strg = strg + "int "+name+"[] = { "
|
|
array = data.cpu().detach().numpy().reshape(-1)
|
|
strg += str(currentbyte) + ","
|
|
for a in array:
|
|
bs = struct.pack("f", a)
|
|
binaryfile.write(bs)
|
|
currentbyte = currentbyte+4
|
|
strg += str(currentbyte-1)
|
|
strg = strg + " };\n"
|
|
return (currentbyte,binaryfile,strg)
|
|
|
|
|
|
def printDick(d, head, obj):
|
|
global currentbyte
|
|
global binaryfile
|
|
strg = ""
|
|
for item in d:
|
|
if type(d[item]).__name__ == 'dict':
|
|
objsub = getattr(obj, item, '')
|
|
if objsub == '':
|
|
objsub = obj[item]
|
|
strg = strg + printDick(d[item], head+"_"+item, objsub)
|
|
else:
|
|
objsub = getattr(obj, item, '')
|
|
if objsub == '':
|
|
objsub = obj[item]
|
|
if d[item] == "Conv2d":
|
|
currentbyte, binaryfile, strg = genData(
|
|
head+"_"+item+"_weight", objsub.weight, currentbyte, binaryfile, strg)
|
|
|
|
if d[item] == "BatchNorm2d":
|
|
currentbyte, binaryfile, strg = genData(
|
|
head+"_"+item+"_running_mean", objsub.running_mean, currentbyte, binaryfile, strg)
|
|
currentbyte, binaryfile, strg = genData(
|
|
head+"_"+item+"_running_var", objsub.running_var, currentbyte, binaryfile, strg)
|
|
currentbyte, binaryfile, strg = genData(
|
|
head+"_"+item+"_weight", objsub.weight, currentbyte, binaryfile, strg)
|
|
currentbyte, binaryfile, strg = genData(
|
|
head+"_"+item+"_bias", objsub.bias, currentbyte, binaryfile, strg)
|
|
|
|
if d[item] == "Linear":
|
|
currentbyte, binaryfile, strg = genData(
|
|
head+"_"+item+"_weight", objsub.weight, currentbyte, binaryfile, strg)
|
|
currentbyte, binaryfile, strg = genData(
|
|
head+"_"+item+"_bias", objsub.bias, currentbyte, binaryfile, strg)
|
|
|
|
return strg
|
|
|
|
|
|
strg = ''
|
|
strg = printDick(ResNet50, "RN50", resnet50)
|
|
|
|
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
|
std=[0.229, 0.224, 0.225])
|
|
|
|
val_loader = torch.utils.data.DataLoader(
|
|
datasets.ImageFolder(CurrentPath+'ImageNet/', transforms.Compose([
|
|
transforms.Resize(256),
|
|
transforms.CenterCrop(224),
|
|
transforms.ToTensor(),
|
|
normalize,
|
|
])),
|
|
batch_size=1, shuffle=False,
|
|
num_workers=1, pin_memory=True)
|
|
|
|
|
|
for batch_idx, (data, target) in enumerate(val_loader):
|
|
currentbyte,binaryfile,strg = genData("verify_input", data, currentbyte, binaryfile, strg)
|
|
x = resnet50.conv1(data)
|
|
currentbyte,binaryfile,strg = genData("verify_conv1", x, currentbyte, binaryfile, strg)
|
|
x = resnet50.bn1(x)
|
|
currentbyte,binaryfile,strg = genData("verify_bn1", x, currentbyte, binaryfile, strg)
|
|
x = resnet50.relu(x)
|
|
currentbyte,binaryfile,strg = genData("verify_relu", x, currentbyte, binaryfile, strg)
|
|
x = resnet50.maxpool(x)
|
|
currentbyte,binaryfile,strg = genData("verify_maxpool", x, currentbyte, binaryfile, strg)
|
|
x = resnet50.layer1(x)
|
|
currentbyte,binaryfile,strg = genData("verify_layer1", x, currentbyte, binaryfile, strg)
|
|
x = resnet50.layer2(x)
|
|
currentbyte,binaryfile,strg = genData("verify_layer2", x, currentbyte, binaryfile, strg)
|
|
x = resnet50.layer3(x)
|
|
currentbyte,binaryfile,strg = genData("verify_layer3", x, currentbyte, binaryfile, strg)
|
|
x = resnet50.layer4(x)
|
|
currentbyte,binaryfile,strg = genData("verify_layer4", x, currentbyte, binaryfile, strg)
|
|
x = resnet50.avgpool(x)
|
|
currentbyte,binaryfile,strg = genData("verify_avgpool", x, currentbyte, binaryfile, strg)
|
|
x = torch.flatten(x, 1)
|
|
x = resnet50.fc(x)
|
|
currentbyte,binaryfile,strg = genData("verify_fc", x, currentbyte, binaryfile, strg)
|
|
break
|
|
|
|
|
|
for batch_idx, (data, target) in enumerate(val_loader):
|
|
currentbyte, binaryfile,strg = genData("input_"+str(batch_idx), data, currentbyte, binaryfile, strg)
|
|
out = resnet50(data)
|
|
currentbyte, binaryfile, strg = genData(
|
|
"output_"+str(batch_idx), out, currentbyte, binaryfile, strg)
|
|
|
|
weightfile.write(strg)
|
|
|
|
binaryfile.close()
|
|
weightfile.close()
|
|
|
|
|
|
print(strg)
|
|
|
|
print("===========================")
|
|
print("===========================")
|
|
print("===========================")
|