witnn/PaintVgg19/vgg19Pytorch.py

134 lines
7.6 KiB
Python
Executable File

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
__weights_dict = dict()
def load_weights(weight_file):
if weight_file == None:
return
try:
weights_dict = np.load(weight_file).item()
except:
weights_dict = np.load(weight_file, encoding='bytes').item()
return weights_dict
class Vgg19Module(nn.Module):
def __init__(self, weight_file):
super(Vgg19Module, self).__init__()
global __weights_dict
__weights_dict = load_weights(weight_file)
self.conv1_1 = self.__conv(2, name='conv1_1', in_channels=3, out_channels=64, kernel_size=(3L, 3L), stride=(1L, 1L), groups=1, bias=True)
self.conv1_2 = self.__conv(2, name='conv1_2', in_channels=64, out_channels=64, kernel_size=(3L, 3L), stride=(1L, 1L), groups=1, bias=True)
self.conv2_1 = self.__conv(2, name='conv2_1', in_channels=64, out_channels=128, kernel_size=(3L, 3L), stride=(1L, 1L), groups=1, bias=True)
self.conv2_2 = self.__conv(2, name='conv2_2', in_channels=128, out_channels=128, kernel_size=(3L, 3L), stride=(1L, 1L), groups=1, bias=True)
self.conv3_1 = self.__conv(2, name='conv3_1', in_channels=128, out_channels=256, kernel_size=(3L, 3L), stride=(1L, 1L), groups=1, bias=True)
self.conv3_2 = self.__conv(2, name='conv3_2', in_channels=256, out_channels=256, kernel_size=(3L, 3L), stride=(1L, 1L), groups=1, bias=True)
self.conv3_3 = self.__conv(2, name='conv3_3', in_channels=256, out_channels=256, kernel_size=(3L, 3L), stride=(1L, 1L), groups=1, bias=True)
self.conv3_4 = self.__conv(2, name='conv3_4', in_channels=256, out_channels=256, kernel_size=(3L, 3L), stride=(1L, 1L), groups=1, bias=True)
self.conv4_1 = self.__conv(2, name='conv4_1', in_channels=256, out_channels=512, kernel_size=(3L, 3L), stride=(1L, 1L), groups=1, bias=True)
self.conv4_2 = self.__conv(2, name='conv4_2', in_channels=512, out_channels=512, kernel_size=(3L, 3L), stride=(1L, 1L), groups=1, bias=True)
self.conv4_3 = self.__conv(2, name='conv4_3', in_channels=512, out_channels=512, kernel_size=(3L, 3L), stride=(1L, 1L), groups=1, bias=True)
self.conv4_4 = self.__conv(2, name='conv4_4', in_channels=512, out_channels=512, kernel_size=(3L, 3L), stride=(1L, 1L), groups=1, bias=True)
self.conv5_1 = self.__conv(2, name='conv5_1', in_channels=512, out_channels=512, kernel_size=(3L, 3L), stride=(1L, 1L), groups=1, bias=True)
self.conv5_2 = self.__conv(2, name='conv5_2', in_channels=512, out_channels=512, kernel_size=(3L, 3L), stride=(1L, 1L), groups=1, bias=True)
self.conv5_3 = self.__conv(2, name='conv5_3', in_channels=512, out_channels=512, kernel_size=(3L, 3L), stride=(1L, 1L), groups=1, bias=True)
self.conv5_4 = self.__conv(2, name='conv5_4', in_channels=512, out_channels=512, kernel_size=(3L, 3L), stride=(1L, 1L), groups=1, bias=True)
self.fc6_1 = self.__dense(name = 'fc6_1', in_features = 25088, out_features = 4096, bias = True)
self.fc7_1 = self.__dense(name = 'fc7_1', in_features = 4096, out_features = 4096, bias = True)
self.fc8_1 = self.__dense(name = 'fc8_1', in_features = 4096, out_features = 1000, bias = True)
def forward(self, x):
conv1_1_pad = F.pad(x, (1L, 1L, 1L, 1L))
conv1_1 = self.conv1_1(conv1_1_pad)
relu1_1 = F.relu(conv1_1)
conv1_2_pad = F.pad(relu1_1, (1L, 1L, 1L, 1L))
conv1_2 = self.conv1_2(conv1_2_pad)
relu1_2 = F.relu(conv1_2)
pool1 = F.max_pool2d(relu1_2, kernel_size=(2L, 2L), stride=(2L, 2L), padding=(0L,), ceil_mode=True)
conv2_1_pad = F.pad(pool1, (1L, 1L, 1L, 1L))
conv2_1 = self.conv2_1(conv2_1_pad)
relu2_1 = F.relu(conv2_1)
conv2_2_pad = F.pad(relu2_1, (1L, 1L, 1L, 1L))
conv2_2 = self.conv2_2(conv2_2_pad)
relu2_2 = F.relu(conv2_2)
pool2 = F.max_pool2d(relu2_2, kernel_size=(2L, 2L), stride=(2L, 2L), padding=(0L,), ceil_mode=True)
conv3_1_pad = F.pad(pool2, (1L, 1L, 1L, 1L))
conv3_1 = self.conv3_1(conv3_1_pad)
relu3_1 = F.relu(conv3_1)
conv3_2_pad = F.pad(relu3_1, (1L, 1L, 1L, 1L))
conv3_2 = self.conv3_2(conv3_2_pad)
relu3_2 = F.relu(conv3_2)
conv3_3_pad = F.pad(relu3_2, (1L, 1L, 1L, 1L))
conv3_3 = self.conv3_3(conv3_3_pad)
relu3_3 = F.relu(conv3_3)
conv3_4_pad = F.pad(relu3_3, (1L, 1L, 1L, 1L))
conv3_4 = self.conv3_4(conv3_4_pad)
relu3_4 = F.relu(conv3_4)
pool3 = F.max_pool2d(relu3_4, kernel_size=(2L, 2L), stride=(2L, 2L), padding=(0L,), ceil_mode=True)
conv4_1_pad = F.pad(pool3, (1L, 1L, 1L, 1L))
conv4_1 = self.conv4_1(conv4_1_pad)
relu4_1 = F.relu(conv4_1)
conv4_2_pad = F.pad(relu4_1, (1L, 1L, 1L, 1L))
conv4_2 = self.conv4_2(conv4_2_pad)
relu4_2 = F.relu(conv4_2)
conv4_3_pad = F.pad(relu4_2, (1L, 1L, 1L, 1L))
conv4_3 = self.conv4_3(conv4_3_pad)
relu4_3 = F.relu(conv4_3)
conv4_4_pad = F.pad(relu4_3, (1L, 1L, 1L, 1L))
conv4_4 = self.conv4_4(conv4_4_pad)
relu4_4 = F.relu(conv4_4)
pool4 = F.max_pool2d(relu4_4, kernel_size=(2L, 2L), stride=(2L, 2L), padding=(0L,), ceil_mode=True)
conv5_1_pad = F.pad(pool4, (1L, 1L, 1L, 1L))
conv5_1 = self.conv5_1(conv5_1_pad)
relu5_1 = F.relu(conv5_1)
conv5_2_pad = F.pad(relu5_1, (1L, 1L, 1L, 1L))
conv5_2 = self.conv5_2(conv5_2_pad)
relu5_2 = F.relu(conv5_2)
conv5_3_pad = F.pad(relu5_2, (1L, 1L, 1L, 1L))
conv5_3 = self.conv5_3(conv5_3_pad)
relu5_3 = F.relu(conv5_3)
conv5_4_pad = F.pad(relu5_3, (1L, 1L, 1L, 1L))
conv5_4 = self.conv5_4(conv5_4_pad)
relu5_4 = F.relu(conv5_4)
pool5 = F.max_pool2d(relu5_4, kernel_size=(2L, 2L), stride=(2L, 2L), padding=(0L,), ceil_mode=True)
fc6_0 = pool5.view(pool5.size(0), -1)
fc6_1 = self.fc6_1(fc6_0)
relu6 = F.relu(fc6_1)
drop6 = F.dropout(input = relu6, p = 0.5, training = self.training, inplace = True)
fc7_0 = drop6.view(drop6.size(0), -1)
fc7_1 = self.fc7_1(fc7_0)
relu7 = F.relu(fc7_1)
drop7 = F.dropout(input = relu7, p = 0.5, training = self.training, inplace = True)
fc8_0 = drop7.view(drop7.size(0), -1)
fc8_1 = self.fc8_1(fc8_0)
prob = F.softmax(fc8_1)
return prob
@staticmethod
def __conv(dim, name, **kwargs):
if dim == 1: layer = nn.Conv1d(**kwargs)
elif dim == 2: layer = nn.Conv2d(**kwargs)
elif dim == 3: layer = nn.Conv3d(**kwargs)
else: raise NotImplementedError()
layer.state_dict()['weight'].copy_(torch.from_numpy(__weights_dict[name]['weights']))
if 'bias' in __weights_dict[name]:
layer.state_dict()['bias'].copy_(torch.from_numpy(__weights_dict[name]['bias']))
return layer
@staticmethod
def __dense(name, **kwargs):
layer = nn.Linear(**kwargs)
layer.state_dict()['weight'].copy_(torch.from_numpy(__weights_dict[name]['weights']))
if 'bias' in __weights_dict[name]:
layer.state_dict()['bias'].copy_(torch.from_numpy(__weights_dict[name]['bias']))
return layer