witnn/VisualNetwork/model.py

72 lines
2.2 KiB
Python

from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
from torchvision import datasets, transforms
import torchvision.models as models
import matplotlib.pyplot as plt
import numpy as np
# class Net(nn.Module):
# def __init__(self):
# super(Net, self).__init__()
# self.conv1 = nn.Conv2d(1, 64, kernel_size=5)
# self.conv2 = nn.Conv2d(64, 32, kernel_size=3)
# self.conv3 = nn.Conv2d(32, 16, kernel_size=5)
# self.fc1 = nn.Linear(1*16, 10)
#
# def forward(self, x):
#
# x = F.relu(F.max_pool2d(self.conv1(x), 2))
# x = F.relu(F.max_pool2d(self.conv2(x), 2))
# x = F.relu(self.conv3(x), 2)
#
# x = x.view(-1, 1*16)
# x = F.relu(self.fc1(x))
#
# return F.log_softmax(x, dim=1)
# class Net(nn.Module):
# def __init__(self):
# super(Net, self).__init__()
# self.conv1 = nn.Conv2d(1, 16, kernel_size=5)
# self.conv2 = nn.Conv2d(16, 16, kernel_size=3)
# self.conv3 = nn.Conv2d(16, 10, kernel_size=5)
#
# def forward(self, x):
#
# x = F.sigmoid(F.max_pool2d(self.conv1(x), 2))
# x = F.sigmoid(F.max_pool2d(self.conv2(x), 2))
# x = self.conv3(x)
#
# x = x.view(-1, 1*10)
#
# return F.log_softmax(x, dim=1)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
layers = []
layers += [nn.Conv2d(1, 8, kernel_size=5),nn.MaxPool2d(kernel_size=2, stride=2),nn.Sigmoid()]
layers += [nn.Conv2d(8, 8, kernel_size=3),nn.MaxPool2d(kernel_size=2, stride=2),nn.Sigmoid()]
layers += [nn.Conv2d(8, 10, kernel_size=5)]
self.features = nn.Sequential(*layers)
# self.conv1 = nn.Conv2d(1, 8, kernel_size=5)
# self.conv2 = self.__conv(8, 8, kernel_size=3)
# self.conv3 = self.__conv(8, 10, kernel_size=5)
def forward(self, x):
# x = F.sigmoid(F.max_pool2d(self.conv1(x), 2))
# x = F.sigmoid(F.max_pool2d(self.conv2(x), 2))
# x = self.conv3(x)
x = self.features(x)
x = x.view(-1, 1*10)
return F.log_softmax(x, dim=1)