xc7k480t/xdma/RTL/axi_bram.sv

171 lines
5.7 KiB
Systemverilog

module axi_bram #(
parameter AXI_IDWIDTH = 4,
parameter AXI_AWIDTH = 64,
parameter AXI_DWIDTH = 256,
parameter MEM_AWIDTH = 12 // BRAM size = MEM_AWIDTH*C_M_AXI_DATA_WIDTH (bits) = MEM_AWIDTH*C_M_AXI_DATA_WIDTH/8 (bytes)
) (
input wire rstn,
input wire clk,
// AXI-MM AW interface ----------------------------------------------------
output wire s_axi_awready,
input wire s_axi_awvalid,
input wire [ AXI_AWIDTH-1:0] s_axi_awaddr,
input wire [ 7:0] s_axi_awlen,
input wire [ AXI_IDWIDTH-1:0] s_axi_awid,
// AXI-MM W interface ----------------------------------------------------
output wire s_axi_wready,
input wire s_axi_wvalid,
input wire s_axi_wlast,
input wire [ AXI_DWIDTH-1:0] s_axi_wdata,
input wire [(AXI_DWIDTH/8)-1:0] s_axi_wstrb,
// AXI-MM B interface ----------------------------------------------------
input wire s_axi_bready,
output wire s_axi_bvalid,
output wire [ AXI_IDWIDTH-1:0] s_axi_bid,
output wire [ 1:0] s_axi_bresp,
// AXI-MM AR interface ----------------------------------------------------
output wire s_axi_arready,
input wire s_axi_arvalid,
input wire [ AXI_AWIDTH-1:0] s_axi_araddr,
input wire [ 7:0] s_axi_arlen,
input wire [ AXI_IDWIDTH-1:0] s_axi_arid,
// AXI-MM R interface ----------------------------------------------------
input wire s_axi_rready,
output wire s_axi_rvalid,
output wire s_axi_rlast,
output reg [ AXI_DWIDTH-1:0] s_axi_rdata,
output wire [ AXI_IDWIDTH-1:0] s_axi_rid,
output wire [ 1:0] s_axi_rresp
);
function automatic int log2 (input int x);
int xtmp = x, y = 0;
while (xtmp != 0) begin
y ++;
xtmp >>= 1;
end
return (y == 0) ? 0 : (y - 1);
endfunction
// ---------------------------------------------------------------------------------------
// AXI READ state machine
// ---------------------------------------------------------------------------------------
enum reg [0:0] {R_IDLE, R_BUSY} rstate = R_IDLE;
reg [AXI_IDWIDTH-1:0] rid = '0;
reg [ 7:0] rcount = '0;
reg [ MEM_AWIDTH-1:0] mem_raddr, mem_raddr_last;
assign s_axi_arready = (rstate == R_IDLE);
assign s_axi_rvalid = (rstate == R_BUSY);
assign s_axi_rlast = (rstate == R_BUSY) && (rcount == 8'd0);
assign s_axi_rid = rid;
assign s_axi_rresp = '0;
always @ (posedge clk or negedge rstn)
if (~rstn) begin
rstate <= R_IDLE;
rid <= '0;
rcount <= '0;
end else begin
case (rstate)
R_IDLE :
if (s_axi_arvalid) begin
rstate <= R_BUSY;
rid <= s_axi_arid;
rcount <= s_axi_arlen;
end
R_BUSY :
if (s_axi_rready) begin
if (rcount == 8'd0) // the last data of read session
rstate <= R_IDLE;
rcount <= rcount - 8'd1;
end
endcase
end
always_comb
if (rstate == R_IDLE && s_axi_arvalid)
mem_raddr = (MEM_AWIDTH)'(s_axi_araddr >> log2(AXI_DWIDTH/8));
else if (rstate == R_BUSY && s_axi_rready)
mem_raddr = mem_raddr_last + (MEM_AWIDTH)'(1);
else
mem_raddr = mem_raddr_last;
always @ (posedge clk)
mem_raddr_last <= mem_raddr;
// ---------------------------------------------------------------------------------------
// AXI WRITE state machine
// ---------------------------------------------------------------------------------------
enum reg [1:0] {W_IDLE, W_BUSY, W_RESP} wstate = W_IDLE;
reg [AXI_IDWIDTH-1:0] wid = '0;
reg [ 7:0] wcount = '0;
reg [ MEM_AWIDTH-1:0] mem_waddr = '0;
assign s_axi_awready = (wstate == W_IDLE);
assign s_axi_wready = (wstate == W_BUSY);
assign s_axi_bvalid = (wstate == W_RESP);
assign s_axi_bid = wid;
assign s_axi_bresp = '0;
always @ (posedge clk or negedge rstn)
if (~rstn) begin
wstate <= W_IDLE;
wid <= '0;
wcount <= '0;
mem_waddr <= '0;
end else begin
case (wstate)
W_IDLE :
if (s_axi_awvalid) begin
wstate <= W_BUSY;
wid <= s_axi_awid;
wcount <= s_axi_awlen;
mem_waddr <= (MEM_AWIDTH)'(s_axi_awaddr >> log2(AXI_DWIDTH/8));
end
W_BUSY :
if (s_axi_wvalid) begin
if (wcount == 8'd0 || s_axi_wlast)
wstate <= W_RESP;
wcount <= wcount - 8'd1;
mem_waddr <= mem_waddr + (MEM_AWIDTH)'(1);
end
W_RESP :
if (s_axi_bready)
wstate <= W_IDLE;
default :
wstate <= W_IDLE;
endcase
end
// ---------------------------------------------------------------------------------------
// a block RAM
// ---------------------------------------------------------------------------------------
reg [AXI_DWIDTH-1:0] mem [ 1<<MEM_AWIDTH ];
always @ (posedge clk)
s_axi_rdata <= mem[mem_raddr];
always @ (posedge clk)
if (s_axi_wvalid & s_axi_wready)
for (int i=0; i<(AXI_DWIDTH/8); i++)
if (s_axi_wstrb[i])
mem[mem_waddr][i*8+:8] <= s_axi_wdata[i*8+:8];
endmodule