Hazard3/test/sim/rvcpp/rv.cpp

936 lines
25 KiB
C++

#include <cstdint>
#include <cassert>
#include <cstdio>
#include <iostream>
#include <fstream>
#include <optional>
#include <tuple>
#include <vector>
#include "rv_opcodes.h"
#include "rv_types.h"
#include "rv_csr.h"
#include "mem.h"
// Minimal RISC-V interpreter, supporting:
// - RV32I
// - M
// - A
// - C (also called Zca)
// - Zcmp
// - M-mode traps
// Use unsigned arithmetic everywhere, with explicit sign extension as required.
static inline ux_t sext(ux_t bits, int sign_bit) {
if (sign_bit >= XLEN - 1)
return bits;
else
return (bits & (1u << sign_bit + 1) - 1) - ((bits & 1u << sign_bit) << 1);
}
// Inclusive msb:lsb style, like Verilog (and like the ISA manual)
#define BITS_UPTO(msb) (~((-1u << (msb)) << 1))
#define BITRANGE(msb, lsb) (BITS_UPTO((msb) - (lsb)) << (lsb))
#define GETBITS(x, msb, lsb) (((x) & BITRANGE(msb, lsb)) >> (lsb))
#define GETBIT(x, bit) (((x) >> (bit)) & 1u)
static inline ux_t imm_i(uint32_t instr) {
return (instr >> 20) - (instr >> 19 & 0x1000);
}
static inline ux_t imm_s(uint32_t instr) {
return (instr >> 20 & 0xfe0u)
+ (instr >> 7 & 0x1fu)
- (instr >> 19 & 0x1000u);
}
static inline ux_t imm_u(uint32_t instr) {
return instr & 0xfffff000u;
}
static inline ux_t imm_b(uint32_t instr) {
return (instr >> 7 & 0x1e)
+ (instr >> 20 & 0x7e0)
+ (instr << 4 & 0x800)
- (instr >> 19 & 0x1000);
}
static inline ux_t imm_j(uint32_t instr) {
return (instr >> 20 & 0x7fe)
+ (instr >> 9 & 0x800)
+ (instr & 0xff000)
- (instr >> 11 & 0x100000);
}
static inline ux_t imm_ci(uint32_t instr) {
return GETBITS(instr, 6, 2) - (GETBIT(instr, 12) << 5);
}
static inline ux_t imm_cj(uint32_t instr) {
return -(GETBIT(instr, 12) << 11)
+ (GETBIT(instr, 11) << 4)
+ (GETBITS(instr, 10, 9) << 8)
+ (GETBIT(instr, 8) << 10)
+ (GETBIT(instr, 7) << 6)
+ (GETBIT(instr, 6) << 7)
+ (GETBITS(instr, 5, 3) << 1)
+ (GETBIT(instr, 2) << 5);
}
static inline ux_t imm_cb(uint32_t instr) {
return -(GETBIT(instr, 12) << 8)
+ (GETBITS(instr, 11, 10) << 3)
+ (GETBITS(instr, 6, 5) << 6)
+ (GETBITS(instr, 4, 3) << 1)
+ (GETBIT(instr, 2) << 5);
}
static inline uint c_rs1_s(uint32_t instr) {
return GETBITS(instr, 9, 7) + 8;
}
static inline uint c_rs2_s(uint32_t instr) {
return GETBITS(instr, 4, 2) + 8;
}
static inline uint c_rs1_l(uint32_t instr) {
return GETBITS(instr, 11, 7);
}
static inline uint c_rs2_l(uint32_t instr) {
return GETBITS(instr, 6, 2);
}
static inline uint zcmp_n_regs(uint32_t instr) {
uint rlist = GETBITS(instr, 7, 4);
return rlist == 0xf ? 13 : rlist - 3;
}
static inline uint zcmp_stack_adj(uint32_t instr) {
uint nregs = zcmp_n_regs(instr);
uint adj_base =
nregs > 12 ? 0x40 :
nregs > 8 ? 0x30 :
nregs > 4 ? 0x20 : 0x10;
return adj_base + 16 * GETBITS(instr, 3, 2);
}
static inline uint32_t zcmp_reg_mask(uint32_t instr) {
uint32_t mask = 0;
switch (zcmp_n_regs(instr)) {
case 13: mask |= 1u << 27; // s11
mask |= 1u << 26; // s10
case 11: mask |= 1u << 25; // s9
case 10: mask |= 1u << 24; // s8
case 9: mask |= 1u << 23; // s7
case 8: mask |= 1u << 22; // s6
case 7: mask |= 1u << 21; // s5
case 6: mask |= 1u << 20; // s4
case 5: mask |= 1u << 19; // s3
case 4: mask |= 1u << 18; // s2
case 3: mask |= 1u << 9; // s1
case 2: mask |= 1u << 8; // s0
case 1: mask |= 1u << 1; // ra
}
return mask;
}
static inline uint zcmp_s_mapping(uint s_raw) {
return s_raw + 8 + 8 * ((s_raw & 0x6) != 0);
}
class RVCSR {
// Current core privilege level (M/S/U)
uint priv;
ux_t mcycle;
ux_t mstatus;
ux_t mie;
ux_t mip;
ux_t mtvec;
ux_t mscratch;
ux_t mepc;
ux_t mcause;
public:
enum {
WRITE = 0,
WRITE_SET = 1,
WRITE_CLEAR = 2
};
RVCSR() {
priv = 3;
mcycle = 0;
mstatus = 0;
mie = 0;
mip = 0;
mtvec = 0;
mscratch = 0;
mepc = 0;
mcause = 0;
}
void step() {++mcycle;}
// Returns None on permission/decode fail
std::optional<ux_t> read(uint16_t addr, bool side_effect=true) {
if (addr >= 1u << 12 || GETBITS(addr, 9, 8) > priv)
return {};
switch (addr) {
case CSR_MISA: return 0x40101105; // RV32IMAC + U
case CSR_MHARTID: return 0;
case CSR_MARCHID: return 0;
case CSR_MIMPID: return 0;
case CSR_MVENDORID: return 0;
case CSR_MSTATUS: return mstatus;
case CSR_MIE: return mie;
case CSR_MIP: return mip;
case CSR_MTVEC: return mtvec;
case CSR_MSCRATCH: return mscratch;
case CSR_MEPC: return mepc;
case CSR_MCAUSE: return mcause;
case CSR_MTVAL: return 0;
case CSR_MCYCLE: return mcycle;
case CSR_MINSTRET: return mcycle;
default: return {};
}
}
// Returns false on permission/decode fail
bool write(uint16_t addr, ux_t data, uint op=WRITE) {
if (addr >= 1u << 12 || GETBITS(addr, 9, 8) > priv)
return false;
if (addr >= 1u << 12)
if (op == WRITE_CLEAR || op == WRITE_SET) {
std::optional<ux_t> rdata = read(addr, false);
if (!rdata)
return false;
if (op == WRITE_CLEAR)
data &= ~*rdata;
else
data |= *rdata;
}
switch (addr) {
case CSR_MISA: break;
case CSR_MHARTID: break;
case CSR_MARCHID: break;
case CSR_MIMPID: break;
case CSR_MSTATUS: mstatus = data; break;
case CSR_MIE: mie = data; break;
case CSR_MIP: break;
case CSR_MTVEC: mtvec = data & 0xfffffffdu; break;
case CSR_MSCRATCH: mscratch = data; break;
case CSR_MEPC: mepc = data & 0xfffffffeu; break;
case CSR_MCAUSE: mcause = data & 0x800000ffu; break;
case CSR_MTVAL: break;
case CSR_MCYCLE: mcycle = data; break;
case CSR_MINSTRET: mcycle = data; break;
default: return false;
}
return true;
}
// Update trap state (including change of privilege level), return trap target PC
ux_t trap_enter(uint xcause, ux_t xepc) {
mstatus = (mstatus & ~MSTATUS_MPP) | (priv << 11);
priv = PRV_M;
if (mstatus & MSTATUS_MIE)
mstatus |= MSTATUS_MPIE;
mstatus &= ~MSTATUS_MIE;
mcause = xcause;
mepc = xepc;
if ((mtvec & 0x1) && (xcause & (1u << 31))) {
return (mtvec & -2) + 4 * (xcause & ~(1u << 31));
} else {
return mtvec & -2;
}
}
// Update trap state, return mepc:
ux_t trap_mret() {
priv = GETBITS(mstatus, 12, 11);
if (mstatus & MSTATUS_MPIE)
mstatus |= MSTATUS_MIE;
mstatus &= ~MSTATUS_MPIE;
return mepc;
}
uint getpriv() {
return priv;
}
};
struct RVCore {
std::array<ux_t, 32> regs;
ux_t pc;
RVCSR csr;
bool load_reserved;
RVCore(ux_t reset_vector=0x40) {
std::fill(std::begin(regs), std::end(regs), 0);
pc = reset_vector;
load_reserved = false;
}
enum {
OPC_LOAD = 0b00'000,
OPC_MISC_MEM = 0b00'011,
OPC_OP_IMM = 0b00'100,
OPC_AUIPC = 0b00'101,
OPC_STORE = 0b01'000,
OPC_AMO = 0b01'011,
OPC_OP = 0b01'100,
OPC_LUI = 0b01'101,
OPC_BRANCH = 0b11'000,
OPC_JALR = 0b11'001,
OPC_JAL = 0b11'011,
OPC_SYSTEM = 0b11'100
};
void step(MemBase32 &mem, bool trace=false) {
uint32_t instr = mem.r16(pc) | (mem.r16(pc + 2) << 16);
std::optional<ux_t> rd_wdata;
std::optional<ux_t> pc_wdata;
uint regnum_rd = 0;
std::optional<uint> exception_cause;
uint opc = instr >> 2 & 0x1f;
uint funct3 = instr >> 12 & 0x7;
uint funct7 = instr >> 25 & 0x7f;
if ((instr & 0x3) == 0x3) {
// 32-bit instruction
uint regnum_rs1 = instr >> 15 & 0x1f;
uint regnum_rs2 = instr >> 20 & 0x1f;
regnum_rd = instr >> 7 & 0x1f;
ux_t rs1 = regs[regnum_rs1];
ux_t rs2 = regs[regnum_rs2];
switch (opc) {
case OPC_OP: {
if (funct7 == 0b00'00000) {
if (funct3 == 0b000)
rd_wdata = rs1 + rs2;
else if (funct3 == 0b001)
rd_wdata = rs1 << (rs2 & 0x1f);
else if (funct3 == 0b010)
rd_wdata = (sx_t)rs1 < (sx_t)rs2;
else if (funct3 == 0b011)
rd_wdata = rs1 < rs2;
else if (funct3 == 0b100)
rd_wdata = rs1 ^ rs2;
else if (funct3 == 0b101)
rd_wdata = rs1 >> (rs2 & 0x1f);
else if (funct3 == 0b110)
rd_wdata = rs1 | rs2;
else if (funct3 == 0b111)
rd_wdata = rs1 & rs2;
else
exception_cause = XCAUSE_INSTR_ILLEGAL;
}
else if (funct7 == 0b01'00000) {
if (funct3 == 0b000)
rd_wdata = rs1 - rs2;
else if (funct3 == 0b101)
rd_wdata = (sx_t)rs1 >> (rs2 & 0x1f);
else
exception_cause = XCAUSE_INSTR_ILLEGAL;
}
else if (funct7 == 0b00'00001) {
if (funct3 < 0b100) {
sdx_t mul_op_a = rs1;
sdx_t mul_op_b = rs2;
if (funct3 != 0b011)
mul_op_a -= (mul_op_a & (1 << XLEN - 1)) << 1;
if (funct3 < 0b010)
mul_op_b -= (mul_op_b & (1 << XLEN - 1)) << 1;
sdx_t mul_result = mul_op_a * mul_op_b;
if (funct3 == 0b000)
rd_wdata = mul_result;
else
rd_wdata = mul_result >> XLEN;
}
else {
if (funct3 == 0b100) {
if (rs2 == 0)
rd_wdata = -1;
else if (rs2 == ~0u)
rd_wdata = -rs1;
else
rd_wdata = (sx_t)rs1 / (sx_t)rs2;
}
else if (funct3 == 0b101) {
rd_wdata = rs2 ? rs1 / rs2 : ~0ul;
}
else if (funct3 == 0b110) {
if (rs2 == 0)
rd_wdata = rs1;
else if (rs2 == ~0u) // potential overflow of division
rd_wdata = 0;
else
rd_wdata = (sx_t)rs1 % (sx_t)rs2;
}
else if (funct3 == 0b111) {
rd_wdata = rs2 ? rs1 % rs2 : rs1;
}
}
}
else {
exception_cause = XCAUSE_INSTR_ILLEGAL;
}
break;
}
case OPC_OP_IMM: {
ux_t imm = imm_i(instr);
if (funct3 == 0b000)
rd_wdata = rs1 + imm;
else if (funct3 == 0b010)
rd_wdata = !!((sx_t)rs1 < (sx_t)imm);
else if (funct3 == 0b011)
rd_wdata = !!(rs1 < imm);
else if (funct3 == 0b100)
rd_wdata = rs1 ^ imm;
else if (funct3 == 0b110)
rd_wdata = rs1 | imm;
else if (funct3 == 0b111)
rd_wdata = rs1 & imm;
else if (funct3 == 0b001 || funct3 == 0b101) {
// shamt is regnum_rs2
if (funct7 == 0b00'00000 && funct3 == 0b001) {
rd_wdata = rs1 << regnum_rs2;
}
else if (funct7 == 0b00'00000 && funct3 == 0b101) {
rd_wdata = rs1 >> regnum_rs2;
}
else if (funct7 == 0b01'00000 && funct3 == 0b101) {
rd_wdata = (sx_t)rs1 >> regnum_rs2;
}
else {
exception_cause = XCAUSE_INSTR_ILLEGAL;
}
}
else {
exception_cause = XCAUSE_INSTR_ILLEGAL;
}
break;
}
case OPC_BRANCH: {
ux_t target = pc + imm_b(instr);
bool taken = false;
if ((funct3 & 0b110) == 0b000)
taken = rs1 == rs2;
else if ((funct3 & 0b110) == 0b100)
taken = (sx_t)rs1 < (sx_t) rs2;
else if ((funct3 & 0b110) == 0b110)
taken = rs1 < rs2;
else
exception_cause = XCAUSE_INSTR_ILLEGAL;
if (!exception_cause && funct3 & 0b001)
taken = !taken;
if (taken)
pc_wdata = target;
break;
}
case OPC_LOAD: {
ux_t load_addr = rs1 + imm_i(instr);
if (funct3 == 0b000) {
rd_wdata = sext(mem.r8(load_addr), 7);
} else if (funct3 == 0b001) {
if (load_addr & 0x1)
exception_cause = XCAUSE_LOAD_ALIGN;
else
rd_wdata = sext(mem.r16(load_addr), 15);
} else if (funct3 == 0b010) {
if (load_addr & 0x3)
exception_cause = XCAUSE_LOAD_ALIGN;
else
rd_wdata = mem.r32(load_addr);
} else if (funct3 == 0b100) {
rd_wdata = mem.r8(load_addr);
} else if (funct3 == 0b101) {
if (load_addr & 0x1)
exception_cause = XCAUSE_LOAD_ALIGN;
else
rd_wdata = mem.r16(load_addr);
} else {
exception_cause = XCAUSE_INSTR_ILLEGAL;
}
break;
}
case OPC_STORE: {
ux_t store_addr = rs1 + imm_s(instr);
if (funct3 == 0b000) {
mem.w8(store_addr, rs2 & 0xffu);
} else if (funct3 == 0b001) {
if (store_addr & 0x1)
exception_cause = XCAUSE_STORE_ALIGN;
else
mem.w16(store_addr, rs2 & 0xffffu);
} else if (funct3 == 0b010) {
if (store_addr & 0x3)
exception_cause = XCAUSE_STORE_ALIGN;
else
mem.w32(store_addr, rs2);
} else {
exception_cause = XCAUSE_INSTR_ILLEGAL;
}
break;
}
case OPC_AMO: {
if (RVOPC_MATCH(instr, LR_W)) {
if (rs1 & 0x3) {
exception_cause = XCAUSE_LOAD_ALIGN;
} else {
rd_wdata = mem.r32(rs1);
load_reserved = true;
}
} else if (RVOPC_MATCH(instr, SC_W)) {
if (rs1 & 0x3) {
exception_cause = XCAUSE_STORE_ALIGN;
} else {
if (load_reserved) {
load_reserved = false;
mem.w32(rs1, rs2);
rd_wdata = 0;
} else {
rd_wdata = 1;
}
}
} else if (RVOPC_MATCH(instr, AMOSWAP_W)) {
if (rs1 & 0x3) {
exception_cause = XCAUSE_STORE_ALIGN;
} else {
rd_wdata = mem.r32(rs1);
mem.w32(rs1, rs2);
}
} else if (
RVOPC_MATCH(instr, AMOSWAP_W) ||
RVOPC_MATCH(instr, AMOADD_W) ||
RVOPC_MATCH(instr, AMOXOR_W) ||
RVOPC_MATCH(instr, AMOAND_W) ||
RVOPC_MATCH(instr, AMOOR_W) ||
RVOPC_MATCH(instr, AMOMIN_W) ||
RVOPC_MATCH(instr, AMOMAX_W) ||
RVOPC_MATCH(instr, AMOMINU_W) ||
RVOPC_MATCH(instr, AMOMAXU_W)) {
if (rs1 & 0x3) {
exception_cause = XCAUSE_STORE_ALIGN;
} else {
rd_wdata = mem.r32(rs1);
switch (instr & RVOPC_AMOSWAP_W_MASK) {
case RVOPC_AMOSWAP_W_BITS: mem.w32(rs1, *rd_wdata); break;
case RVOPC_AMOADD_W_BITS: mem.w32(rs1, *rd_wdata + rs2); break;
case RVOPC_AMOXOR_W_BITS: mem.w32(rs1, *rd_wdata ^ rs2); break;
case RVOPC_AMOAND_W_BITS: mem.w32(rs1, *rd_wdata & rs2); break;
case RVOPC_AMOOR_W_BITS: mem.w32(rs1, *rd_wdata | rs2); break;
case RVOPC_AMOMIN_W_BITS: mem.w32(rs1, (sx_t)*rd_wdata < (sx_t)rs2 ? *rd_wdata : rs2); break;
case RVOPC_AMOMAX_W_BITS: mem.w32(rs1, (sx_t)*rd_wdata > (sx_t)rs2 ? *rd_wdata : rs2); break;
case RVOPC_AMOMINU_W_BITS: mem.w32(rs1, *rd_wdata < rs2 ? *rd_wdata : rs2); break;
case RVOPC_AMOMAXU_W_BITS: mem.w32(rs1, *rd_wdata > rs2 ? *rd_wdata : rs2); break;
default: assert(false); break;
}
}
} else {
exception_cause = XCAUSE_INSTR_ILLEGAL;
}
break;
}
case OPC_JAL:
rd_wdata = pc + 4;
pc_wdata = pc + imm_j(instr);
break;
case OPC_JALR:
rd_wdata = pc + 4;
pc_wdata = (rs1 + imm_i(instr)) & -2u;
break;
case OPC_LUI:
rd_wdata = imm_u(instr);
break;
case OPC_AUIPC:
rd_wdata = pc + imm_u(instr);
break;
case OPC_SYSTEM: {
uint16_t csr_addr = instr >> 20;
if (funct3 >= 0b001 && funct3 <= 0b011) {
// csrrw, csrrs, csrrc
uint write_op = funct3 - 0b001;
if (write_op != RVCSR::WRITE || regnum_rd != 0) {
rd_wdata = csr.read(csr_addr);
if (!rd_wdata) {
exception_cause = XCAUSE_INSTR_ILLEGAL;
}
}
else if (write_op == RVCSR::WRITE || regnum_rs1 != 0) {
if (!csr.write(csr_addr, rs1, write_op)) {
exception_cause = XCAUSE_INSTR_ILLEGAL;
}
}
}
else if (funct3 >= 0b101 && funct3 <= 0b111) {
// csrrwi, csrrsi, csrrci
uint write_op = funct3 - 0b101;
if (write_op != RVCSR::WRITE || regnum_rd != 0)
rd_wdata = csr.read(csr_addr);
if (write_op == RVCSR::WRITE || regnum_rs1 != 0)
csr.write(csr_addr, regnum_rs1, write_op);
} else if (RVOPC_MATCH(instr, MRET)) {
if (csr.getpriv() == PRV_M) {
pc_wdata = csr.trap_mret();
} else {
exception_cause = XCAUSE_INSTR_ILLEGAL;
}
} else if (RVOPC_MATCH(instr, ECALL)) {
exception_cause = XCAUSE_ECALL_U + csr.getpriv();
} else if (RVOPC_MATCH(instr, EBREAK)) {
exception_cause = XCAUSE_EBREAK;
} else {
exception_cause = XCAUSE_INSTR_ILLEGAL;
}
break;
}
default:
exception_cause = XCAUSE_INSTR_ILLEGAL;
break;
}
} else if ((instr & 0x3) == 0x0) {
// RVC Quadrant 00:
if (RVOPC_MATCH(instr, ILLEGAL16)) {
exception_cause = XCAUSE_INSTR_ILLEGAL;
} else if (RVOPC_MATCH(instr, C_ADDI4SPN)) {
regnum_rd = c_rs2_s(instr);
rd_wdata = regs[2]
+ (GETBITS(instr, 12, 11) << 4)
+ (GETBITS(instr, 10, 7) << 6)
+ (GETBIT(instr, 6) << 2)
+ (GETBIT(instr, 5) << 3);
} else if (RVOPC_MATCH(instr, C_LW)) {
regnum_rd = c_rs2_s(instr);
uint32_t addr = regs[c_rs1_s(instr)]
+ (GETBIT(instr, 6) << 2)
+ (GETBITS(instr, 12, 10) << 3)
+ (GETBIT(instr, 5) << 6);
rd_wdata = mem.r32(addr);
} else if (RVOPC_MATCH(instr, C_SW)) {
uint32_t addr = regs[c_rs1_s(instr)]
+ (GETBIT(instr, 6) << 2)
+ (GETBITS(instr, 12, 10) << 3)
+ (GETBIT(instr, 5) << 6);
mem.w32(addr, regs[c_rs2_s(instr)]);
} else {
exception_cause = XCAUSE_INSTR_ILLEGAL;
}
} else if ((instr & 0x3) == 0x1) {
// RVC Quadrant 01:
if (RVOPC_MATCH(instr, C_ADDI)) {
regnum_rd = c_rs1_l(instr);
rd_wdata = regs[c_rs1_l(instr)] + imm_ci(instr);
} else if (RVOPC_MATCH(instr, C_JAL)) {
pc_wdata = pc + imm_cj(instr);
regnum_rd = 1;
rd_wdata = pc + 2;
} else if (RVOPC_MATCH(instr, C_LI)) {
regnum_rd = c_rs1_l(instr);
rd_wdata = imm_ci(instr);
} else if (RVOPC_MATCH(instr, C_LUI)) {
regnum_rd = c_rs1_l(instr);
// ADDI16SPN if rd is sp
if (regnum_rd == 2) {
rd_wdata = regs[2]
- (GETBIT(instr, 12) << 9)
+ (GETBIT(instr, 6) << 4)
+ (GETBIT(instr, 5) << 6)
+ (GETBITS(instr, 4, 3) << 7)
+ (GETBIT(instr, 2) << 5);
} else {
rd_wdata = -(GETBIT(instr, 12) << 17)
+ (GETBITS(instr, 6, 2) << 12);
}
} else if (RVOPC_MATCH(instr, C_SRLI)) {
regnum_rd = c_rs1_s(instr);
rd_wdata = regs[regnum_rd] >> GETBITS(instr, 6, 2);
} else if (RVOPC_MATCH(instr, C_SRAI)) {
regnum_rd = c_rs1_s(instr);
rd_wdata = (sx_t)regs[regnum_rd] >> GETBITS(instr, 6, 2);
} else if (RVOPC_MATCH(instr, C_ANDI)) {
regnum_rd = c_rs1_s(instr);
rd_wdata = regs[regnum_rd] & imm_ci(instr);
} else if (RVOPC_MATCH(instr, C_SUB)) {
regnum_rd = c_rs1_s(instr);
rd_wdata = regs[c_rs1_s(instr)] - regs[c_rs2_s(instr)];
} else if (RVOPC_MATCH(instr, C_XOR)) {
regnum_rd = c_rs1_s(instr);
rd_wdata = regs[c_rs1_s(instr)] ^ regs[c_rs2_s(instr)];
} else if (RVOPC_MATCH(instr, C_OR)) {
regnum_rd = c_rs1_s(instr);
rd_wdata = regs[c_rs1_s(instr)] | regs[c_rs2_s(instr)];
} else if (RVOPC_MATCH(instr, C_AND)) {
regnum_rd = c_rs1_s(instr);
rd_wdata = regs[c_rs1_s(instr)] & regs[c_rs2_s(instr)];
} else if (RVOPC_MATCH(instr, C_J)) {
pc_wdata = pc + imm_cj(instr);
} else if (RVOPC_MATCH(instr, C_BEQZ)) {
if (regs[c_rs1_s(instr)] == 0) {
pc_wdata = pc + imm_cb(instr);
}
} else if (RVOPC_MATCH(instr, C_BNEZ)) {
if (regs[c_rs1_s(instr)] != 0) {
pc_wdata = pc + imm_cb(instr);
}
} else {
exception_cause = XCAUSE_INSTR_ILLEGAL;
}
} else {
// RVC Quadrant 10:
if (RVOPC_MATCH(instr, C_SLLI)) {
regnum_rd = c_rs1_l(instr);
rd_wdata = regs[regnum_rd] << GETBITS(instr, 6, 2);
} else if (RVOPC_MATCH(instr, C_MV)) {
if (c_rs2_l(instr) == 0) {
// c.jr
pc_wdata = regs[c_rs1_l(instr)] & -2u;;
} else {
regnum_rd = c_rs1_l(instr);
rd_wdata = regs[c_rs2_l(instr)];
}
} else if (RVOPC_MATCH(instr, C_ADD)) {
if (c_rs2_l(instr) == 0) {
if (c_rs1_l(instr) == 0) {
// c.ebreak
exception_cause = XCAUSE_EBREAK;
} else {
// c.jalr
pc_wdata = regs[c_rs1_l(instr)] & -2u;
regnum_rd = 1;
rd_wdata = pc + 2;
}
} else {
regnum_rd = c_rs1_l(instr);
rd_wdata = regs[c_rs1_l(instr)] + regs[c_rs2_l(instr)];
}
} else if (RVOPC_MATCH(instr, C_LWSP)) {
regnum_rd = c_rs1_l(instr);
ux_t addr = regs[2]
+ (GETBIT(instr, 12) << 5)
+ (GETBITS(instr, 6, 4) << 2)
+ (GETBITS(instr, 3, 2) << 6);
rd_wdata = mem.r32(addr);
} else if (RVOPC_MATCH(instr, C_SWSP)) {
ux_t addr = regs[2]
+ (GETBITS(instr, 12, 9) << 2)
+ (GETBITS(instr, 8, 7) << 6);
mem.w32(addr, regs[c_rs2_l(instr)]);
// Zcmp:
} else if (RVOPC_MATCH(instr, CM_PUSH)) {
ux_t addr = regs[2];
for (uint i = 31; i > 0; --i) {
if (zcmp_reg_mask(instr) & (1u << i)) {
addr -= 4;
mem.w32(addr, regs[i]);
}
}
regnum_rd = 2;
rd_wdata = regs[2] - zcmp_stack_adj(instr);
} else if (RVOPC_MATCH(instr, CM_POP) || RVOPC_MATCH(instr, CM_POPRET) || RVOPC_MATCH(instr, CM_POPRETZ)) {
bool clear_a0 = RVOPC_MATCH(instr, CM_POPRETZ);
bool ret = clear_a0 || RVOPC_MATCH(instr, CM_POPRET);
ux_t addr = regs[2] + zcmp_stack_adj(instr);
for (uint i = 31; i > 0; --i) {
if (zcmp_reg_mask(instr) & (1u << i)) {
addr -= 4;
regs[i] = mem.r32(addr);
}
}
if (clear_a0)
regs[10] = 0;
if (ret)
pc_wdata = regs[1];
regnum_rd = 2;
rd_wdata = regs[2] + zcmp_stack_adj(instr);
} else if (RVOPC_MATCH(instr, CM_MVSA01)) {
regs[zcmp_s_mapping(GETBITS(instr, 9, 7))] = regs[10];
regs[zcmp_s_mapping(GETBITS(instr, 4, 2))] = regs[11];
} else if (RVOPC_MATCH(instr, CM_MVA01S)) {
regs[10] = regs[zcmp_s_mapping(GETBITS(instr, 9, 7))];
regs[11] = regs[zcmp_s_mapping(GETBITS(instr, 4, 2))];
} else {
exception_cause = XCAUSE_INSTR_ILLEGAL;
}
}
if (trace) {
printf("%08x: ", pc);
if ((instr & 0x3) == 0x3) {
printf("%08x : ", instr);
} else {
printf(" %04x : ", instr & 0xffffu);
}
if (regnum_rd != 0 && rd_wdata) {
printf("%-3s <- %08x ", friendly_reg_names[regnum_rd], *rd_wdata);
} else {
printf(" ");
}
if (pc_wdata) {
printf(": pc <- %08x\n", *pc_wdata);
} else {
printf(":\n");
}
}
if (exception_cause) {
pc_wdata = csr.trap_enter(*exception_cause, pc);
if (trace) {
printf("Trap cause %2u: pc <- %08x\n", *exception_cause, *pc_wdata);
}
}
if (pc_wdata)
pc = *pc_wdata;
else
pc = pc + ((instr & 0x3) == 0x3 ? 4 : 2);
if (rd_wdata && regnum_rd != 0)
regs[regnum_rd] = *rd_wdata;
csr.step();
}
};
const char *help_str =
"Usage: tb [--bin x.bin] [--dump start end] [--vcd x.vcd] [--cycles n]\n"
" --bin x.bin : Flat binary file loaded to address 0x0 in RAM\n"
" --vcd x.vcd : Dummy option for compatibility with CXXRTL tb\n"
" --dump start end : Print out memory contents between start and end (exclusive)\n"
" after execution finishes. Can be passed multiple times.\n"
" --cycles n : Maximum number of cycles to run before exiting.\n"
" --memsize n : Memory size in units of 1024 bytes, default is 16 MB\n"
" --trace : Print out execution tracing info\n"
;
void exit_help(std::string errtext = "") {
std::cerr << errtext << help_str;
exit(-1);
}
int main(int argc, char **argv) {
if (argc < 2)
exit_help();
std::vector<std::tuple<uint32_t, uint32_t>> dump_ranges;
int64_t max_cycles = 100000;
uint32_t ramsize = 16 * (1 << 20);
bool load_bin = false;
std::string bin_path;
bool trace_execution = false;
for (int i = 1; i < argc; ++i) {
std::string s(argv[i]);
if (s == "--bin") {
if (argc - i < 2)
exit_help("Option --bin requires an argument\n");
load_bin = true;
bin_path = argv[i + 1];
i += 1;
}
else if (s == "--vcd") {
if (argc - i < 2)
exit_help("Option --vcd requires an argument\n");
// (We ignore this argument, it's supported for
i += 1;
}
else if (s == "--dump") {
if (argc - i < 3)
exit_help("Option --dump requires 2 arguments\n");
dump_ranges.push_back(std::make_tuple(
std::stoul(argv[i + 1], 0, 0),
std::stoul(argv[i + 2], 0, 0)
));
i += 2;
}
else if (s == "--cycles") {
if (argc - i < 2)
exit_help("Option --cycles requires an argument\n");
max_cycles = std::stol(argv[i + 1], 0, 0);
i += 1;
}
else if (s == "--memsize") {
if (argc - i < 2)
exit_help("Option --memsize requires an argument\n");
ramsize = 1024 * std::stol(argv[i + 1], 0, 0);
i += 1;
}
else if (s == "--trace") {
trace_execution = true;
}
else {
std::cerr << "Unrecognised argument " << s << "\n";
exit_help("");
}
}
FlatMem32 ram(ramsize);
TBMemIO io;
MemMap32 mem;
mem.add(0, ramsize, &ram);
mem.add(0x80000000u, 12, &io);
if (load_bin) {
std::ifstream fd(bin_path, std::ios::binary | std::ios::ate);
std::streamsize bin_size = fd.tellg();
if (bin_size > ramsize) {
std::cerr << "Binary file (" << bin_size << " bytes) is larger than memory (" << ramsize << " bytes)\n";
return -1;
}
fd.seekg(0, std::ios::beg);
fd.read((char*)ram.mem, bin_size);
}
RVCore core;
int64_t cyc;
try {
for (cyc = 0; cyc < max_cycles; ++cyc)
core.step(mem, trace_execution);
}
catch (TBExitException e) {
printf("CPU requested halt. Exit code %d\n", e.exitcode);
printf("Ran for %ld cycles\n", cyc + 1);
}
for (auto [start, end] : dump_ranges) {
printf("Dumping memory from %08x to %08x:\n", start, end);
for (uint32_t i = 0; i < end - start; ++i)
printf("%02x%c", mem.r8(start + i), i % 16 == 15 ? '\n' : ' ');
printf("\n");
}
return 0;
}