TIM-VX/src/tim/transform/ops/conv2d_layout_inference.h

144 lines
6.0 KiB
C
Raw Normal View History

/****************************************************************************
*
* Copyright (c) 2020 Vivante Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*****************************************************************************/
#ifndef TIM_LAYOUT_INFER_CONV2D_LAYOUT_INFERENCE_H_
#define TIM_LAYOUT_INFER_CONV2D_LAYOUT_INFERENCE_H_
#include "tim/vx/ops/conv2d.h"
#include "operation_private.h"
#include "permute_vector.h"
#include "ops/op_layout_inference.h"
namespace tim {
namespace transform {
class Conv2dLayoutInfer : public OpLayoutInfer {
public:
Conv2dLayoutInfer(
const std::shared_ptr<vx::Operation> op,
std::shared_ptr<layout_inference_impl::LayoutInferContext>& context)
: OpLayoutInfer(op, context) {}
void OnInputs(
std::vector<std::shared_ptr<vx::Tensor>>& next_tensors) override {
vx::DataLayout layout = op_->impl()->layout_;
auto required_pv = MakeShared(4);
if (layout == vx::DataLayout::CWHN) {
required_pv = std::make_shared<PermuteVector<4>>(kCWHN2WHCN);
}
auto input_tensors = op_->impl()->InputsTensor();
for (const auto& in : input_tensors) {
std::shared_ptr<vx::Tensor> infer_tensor;
std::shared_ptr<IPermuteVector> trans_pv;
if (in->IsConstTensor() &&
!(in->GetSpec().attr_ & vx::TensorAttribute::INPUT)) {
// For bias
if (in->GetShape().size() == 1) {
infer_tensor = context_->infer_graph_->CreateTensor(
in->GetSpec(), in->GetDataRef());
trans_pv = MakeShared(1);
} else {
// For input/weight
if (!required_pv->IsAligned()) {
auto src_conv2d = std::static_pointer_cast<vx::ops::Conv2d>(op_);
// Support TVM Kernel Layout
if (src_conv2d->KernelDataLayout() == vx::DataLayout::OcIcWH) {
trans_pv = std::make_shared<PermuteVector<4>>(kOcIcWH2WHIcOc);
infer_tensor = PermuteConstTensor(
in, trans_pv);
} else if (src_conv2d->KernelDataLayout() == vx::DataLayout::IcOcWH) {
trans_pv = std::make_shared<PermuteVector<4>>(kIcOcWH2WHIcOc);
infer_tensor = PermuteConstTensor(
in, trans_pv);
} else {
infer_tensor = PermuteConstTensor(in, required_pv);
trans_pv = required_pv;
}
} else {
infer_tensor = context_->infer_graph_->CreateTensor(
in->GetSpec(), in->GetDataRef());
trans_pv = MakeShared(required_pv->Rank());
}
}
} else {
// For bias
if (in->GetShape().size() == 1) {
infer_tensor = context_->GetMapedTensor(in);
trans_pv = MakeShared(1);
} else {
// For input/weight
auto pv = context_->GetPermuteVector(in);
auto final_pv = pv->Reverse()->Add(required_pv);
if (!final_pv->IsAligned()) {
infer_tensor =
InsertPermute(context_->GetMapedTensor(in), final_pv);
trans_pv = required_pv;
} else {
infer_tensor = context_->GetMapedTensor(in);
trans_pv = pv;
}
}
}
context_->UpdateTensorMap(in, infer_tensor);
context_->SetPermuteVector(in, trans_pv);
}
auto pad_type = TranslatePadType(op_->impl()->node()->nn_param.conv2d.pad_type);
std::array<uint32_t, 2> ksize = {
op_->impl()->node()->nn_param.conv2d.ksize[0],
op_->impl()->node()->nn_param.conv2d.ksize[1]
};
std::array<uint32_t, 2> stride = {
op_->impl()->node()->nn_param.conv2d.stride[0],
op_->impl()->node()->nn_param.conv2d.stride[1]
};
std::array<uint32_t, 2> dilation = {
op_->impl()->node()->nn_param.conv2d.dilation[0],
op_->impl()->node()->nn_param.conv2d.dilation[1]
};
std::array<uint32_t, 4> pad = {
op_->impl()->node()->nn_param.conv2d.pad[0],
op_->impl()->node()->nn_param.conv2d.pad[1],
op_->impl()->node()->nn_param.conv2d.pad[2],
op_->impl()->node()->nn_param.conv2d.pad[3]
};
int32_t multiplier = op_->impl()->node()->nn_param.conv2d.multiplier;
int32_t out_channels = op_->impl()->node()->nn_param.conv2d.weights;
auto conv2d = context_->infer_graph_->CreateOperation<vx::ops::Conv2d>(
out_channels, pad_type, ksize, stride, dilation, pad, multiplier,
vx::DataLayout::WHCN, vx::DataLayout::WHIcOc);
auto otensor_infer = CreateOutputsTensor(required_pv);
for (const auto& i_src : input_tensors) {
(*conv2d).BindInput(context_->GetMapedTensor(i_src));
}
(*conv2d).BindOutput(otensor_infer[0]);
context_->SetPermuteVector(op_->impl()->OutputsTensor()[0], required_pv);
// Add out tensor of src_graph into next_tensor
next_tensors.push_back(op_->impl()->OutputsTensor()[0]);
}
};
} // namespace transform
} // namespace tim
#endif