TIM-VX/src/tim/vx/ops/scatternd_test.cc

125 lines
5.1 KiB
C++
Raw Normal View History

/****************************************************************************
*
* Copyright (c) 2021 Vivante Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*****************************************************************************/
#include "tim/vx/context.h"
#include "tim/vx/graph.h"
#include "tim/vx/ops/scatternd.h"
#include "gtest/gtest.h"
TEST(ScatterND, shape_4_4_4) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType indices_shape({1,2});
tim::vx::ShapeType updates_shape({4,4,2});
tim::vx::ShapeType out_shape({4, 4, 4});
tim::vx::TensorSpec indices_spec(tim::vx::DataType::INT32,
indices_shape, tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec updates_spec(tim::vx::DataType::FLOAT32,
updates_shape, tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32,
out_shape, tim::vx::TensorAttribute::OUTPUT);
auto indices_tensor = graph->CreateTensor(indices_spec);
auto updates_tensor = graph->CreateTensor(updates_spec);
auto output_tensor = graph->CreateTensor(output_spec);
std::vector<int32_t> indices_data = { 0, 2 };
std::vector<float> updates_data = {
5,5,5,5, 6,6,6,6,
7,7,7,7, 8,8,8,8,
1,1,1,1, 2,2,2,2,
3,3,3,3, 4,4,4,4,
};
std::vector<float> golden = {
5,5,5,5, 6,6,6,6,
7,7,7,7, 8,8,8,8,
0,0,0,0, 0,0,0,0,
0,0,0,0, 0,0,0,0,
1,1,1,1, 2,2,2,2,
3,3,3,3, 4,4,4,4,
0,0,0,0, 0,0,0,0,
0,0,0,0, 0,0,0,0,
};
EXPECT_TRUE(indices_tensor->CopyDataToTensor(
indices_data.data(), indices_data.size()*sizeof(int32_t)));
EXPECT_TRUE(updates_tensor->CopyDataToTensor(
updates_data.data(), updates_data.size()*sizeof(int32_t)));
std::vector<uint32_t> shape = {4, 4, 4};
auto op = graph->CreateOperation<tim::vx::ops::ScatterND>(shape);
(*op).BindInputs({indices_tensor, updates_tensor}).BindOutputs({output_tensor});
EXPECT_TRUE(graph->Compile());
EXPECT_TRUE(graph->Run());
std::vector<float> output(golden.size());
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(ScatterND, shape_9) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType indices_shape({4});
tim::vx::ShapeType updates_shape({4});
tim::vx::ShapeType out_shape({9});
tim::vx::Quantization updates_quant(tim::vx::QuantType::ASYMMETRIC, 0.5, 0);
tim::vx::Quantization output_quant(tim::vx::QuantType::ASYMMETRIC, 0.5, 0);
tim::vx::TensorSpec indices_spec(tim::vx::DataType::INT32,
indices_shape, tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec updates_spec(tim::vx::DataType::UINT8,
updates_shape, tim::vx::TensorAttribute::INPUT, updates_quant);
tim::vx::TensorSpec output_spec(tim::vx::DataType::UINT8,
out_shape, tim::vx::TensorAttribute::OUTPUT, output_quant);
auto indices_tensor = graph->CreateTensor(indices_spec);
auto updates_tensor = graph->CreateTensor(updates_spec);
auto output_tensor = graph->CreateTensor(output_spec);
std::vector<int32_t> indices_data = { 4, 3, 1, 7 };
std::vector<uint8_t> updates_data = {
18, 20, 22, 24
};
std::vector<uint8_t> golden = {
0, 22, 0, 20, 18, 0, 0, 24, 0
};
EXPECT_TRUE(indices_tensor->CopyDataToTensor(
indices_data.data(), indices_data.size()));
EXPECT_TRUE(updates_tensor->CopyDataToTensor(
updates_data.data(), updates_data.size()));
std::vector<uint32_t> shape = {9};
auto op = graph->CreateOperation<tim::vx::ops::ScatterND>(shape);
(*op).BindInputs({indices_tensor, updates_tensor}).BindOutputs({output_tensor});
EXPECT_TRUE(graph->Compile());
EXPECT_TRUE(graph->Run());
std::vector<uint8_t> output(golden.size());
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}