2021-05-25 01:19:44 +08:00
|
|
|
/****************************************************************************
|
|
|
|
|
*
|
2022-11-08 17:05:51 +08:00
|
|
|
* Copyright (c) 2022 Vivante Corporation
|
2021-05-25 01:19:44 +08:00
|
|
|
*
|
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
|
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
|
|
|
* to deal in the Software without restriction, including without limitation
|
|
|
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
|
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
|
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
|
|
|
*
|
|
|
|
|
* The above copyright notice and this permission notice shall be included in
|
|
|
|
|
* all copies or substantial portions of the Software.
|
|
|
|
|
*
|
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
|
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
|
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
|
|
|
* DEALINGS IN THE SOFTWARE.
|
|
|
|
|
*
|
|
|
|
|
*****************************************************************************/
|
|
|
|
|
#include "tim/vx/context.h"
|
|
|
|
|
#include "tim/vx/graph.h"
|
|
|
|
|
#include "tim/vx/ops/elementwise.h"
|
|
|
|
|
|
|
|
|
|
#include "gtest/gtest.h"
|
2022-02-21 18:34:44 +08:00
|
|
|
#include "test_utils.h"
|
2021-05-25 01:19:44 +08:00
|
|
|
|
|
|
|
|
TEST(FloorDiv, shape_1_fp32) {
|
|
|
|
|
auto ctx = tim::vx::Context::Create();
|
|
|
|
|
auto graph = ctx->CreateGraph();
|
|
|
|
|
|
|
|
|
|
tim::vx::ShapeType io_shape({1});
|
|
|
|
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
|
|
|
|
|
io_shape, tim::vx::TensorAttribute::INPUT);
|
|
|
|
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32,
|
|
|
|
|
io_shape, tim::vx::TensorAttribute::OUTPUT);
|
|
|
|
|
|
|
|
|
|
auto input_tensor_x = graph->CreateTensor(input_spec);
|
|
|
|
|
auto input_tensor_y = graph->CreateTensor(input_spec);
|
|
|
|
|
auto output_tensor = graph->CreateTensor(output_spec);
|
|
|
|
|
|
|
|
|
|
std::vector<float> in_data_x = { 1 };
|
|
|
|
|
std::vector<float> in_data_y = { 0 };
|
|
|
|
|
std::vector<float> golden = { std::numeric_limits<float>::infinity() };
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(input_tensor_x->CopyDataToTensor(in_data_x.data(), in_data_x.size()*4));
|
|
|
|
|
EXPECT_TRUE(input_tensor_y->CopyDataToTensor(in_data_y.data(), in_data_y.size()*4));
|
|
|
|
|
auto op = graph->CreateOperation<tim::vx::ops::FloorDiv>();
|
|
|
|
|
(*op).BindInputs({input_tensor_x, input_tensor_y}).BindOutputs({output_tensor});
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(graph->Compile());
|
|
|
|
|
EXPECT_TRUE(graph->Run());
|
|
|
|
|
std::vector<float> output(1);
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
|
|
|
|
EXPECT_EQ(golden, output);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(FloorDiv, shape_5_1_broadcast_float32) {
|
|
|
|
|
auto ctx = tim::vx::Context::Create();
|
|
|
|
|
auto graph = ctx->CreateGraph();
|
|
|
|
|
|
|
|
|
|
tim::vx::ShapeType in_shape_x({5, 1});
|
|
|
|
|
tim::vx::ShapeType in_shape_y({1});
|
|
|
|
|
tim::vx::ShapeType out_shape({5, 1});
|
|
|
|
|
tim::vx::TensorSpec input_spec_x(tim::vx::DataType::FLOAT32,
|
|
|
|
|
in_shape_x, tim::vx::TensorAttribute::INPUT);
|
|
|
|
|
tim::vx::TensorSpec input_spec_y(tim::vx::DataType::FLOAT32,
|
|
|
|
|
in_shape_y, tim::vx::TensorAttribute::INPUT);
|
|
|
|
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32,
|
|
|
|
|
out_shape, tim::vx::TensorAttribute::OUTPUT);
|
|
|
|
|
|
|
|
|
|
auto input_tensor_x = graph->CreateTensor(input_spec_x);
|
|
|
|
|
auto input_tensor_y = graph->CreateTensor(input_spec_y);
|
|
|
|
|
auto output_tensor = graph->CreateTensor(output_spec);
|
|
|
|
|
|
|
|
|
|
std::vector<float> in_data_x = { 1, 3, -2, 0, 99 };
|
|
|
|
|
std::vector<float> in_data_y = { 2 };
|
|
|
|
|
std::vector<float> golden = { 0, 1, -1, 0, 49 };
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(input_tensor_x->CopyDataToTensor(in_data_x.data(), in_data_x.size()*4));
|
|
|
|
|
EXPECT_TRUE(input_tensor_y->CopyDataToTensor(in_data_y.data(), in_data_y.size()*4));
|
|
|
|
|
auto op = graph->CreateOperation<tim::vx::ops::FloorDiv>();
|
|
|
|
|
(*op).BindInputs({input_tensor_x, input_tensor_y}).BindOutputs({output_tensor});
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(graph->Compile());
|
|
|
|
|
EXPECT_TRUE(graph->Run());
|
|
|
|
|
std::vector<float> output(5);
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
|
|
|
|
EXPECT_EQ(golden, output);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
TEST(FloorDiv, shape_5_1_broadcast_uint8) {
|
|
|
|
|
auto ctx = tim::vx::Context::Create();
|
|
|
|
|
auto graph = ctx->CreateGraph();
|
|
|
|
|
|
|
|
|
|
tim::vx::ShapeType in_shape_x({1});
|
|
|
|
|
tim::vx::ShapeType in_shape_y({5, 1});
|
|
|
|
|
tim::vx::ShapeType out_shape({5, 1});
|
|
|
|
|
tim::vx::Quantization quant(tim::vx::QuantType::ASYMMETRIC, 1, 0);
|
|
|
|
|
tim::vx::Quantization quant_out(tim::vx::QuantType::ASYMMETRIC, 0.5, 0);
|
|
|
|
|
tim::vx::TensorSpec input_spec_x(tim::vx::DataType::UINT8,
|
|
|
|
|
in_shape_x, tim::vx::TensorAttribute::INPUT, quant);
|
|
|
|
|
tim::vx::TensorSpec input_spec_y(tim::vx::DataType::UINT8,
|
|
|
|
|
in_shape_y, tim::vx::TensorAttribute::INPUT, quant);
|
|
|
|
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::UINT8,
|
|
|
|
|
out_shape, tim::vx::TensorAttribute::OUTPUT, quant_out);
|
|
|
|
|
|
|
|
|
|
auto input_tensor_x = graph->CreateTensor(input_spec_x);
|
|
|
|
|
auto input_tensor_y = graph->CreateTensor(input_spec_y);
|
|
|
|
|
auto output_tensor = graph->CreateTensor(output_spec);
|
|
|
|
|
|
|
|
|
|
std::vector<uint8_t> in_data_x = { 255 };
|
|
|
|
|
std::vector<uint8_t> in_data_y = { 1, 3, 2, 0, 255 };
|
|
|
|
|
std::vector<uint8_t> golden = { 255, 170, 254, 255, 2 };
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(input_tensor_x->CopyDataToTensor(in_data_x.data(), in_data_x.size()));
|
|
|
|
|
EXPECT_TRUE(input_tensor_y->CopyDataToTensor(in_data_y.data(), in_data_y.size()));
|
|
|
|
|
auto op = graph->CreateOperation<tim::vx::ops::FloorDiv>();
|
|
|
|
|
(*op).BindInputs({input_tensor_x, input_tensor_y}).BindOutputs({output_tensor});
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(graph->Compile());
|
|
|
|
|
EXPECT_TRUE(graph->Run());
|
|
|
|
|
std::vector<uint8_t> output(5);
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
|
|
|
|
EXPECT_EQ(golden, output);
|
|
|
|
|
}
|
2021-11-04 10:44:52 +08:00
|
|
|
|
|
|
|
|
TEST(Div, shape_1_fp32) {
|
|
|
|
|
auto ctx = tim::vx::Context::Create();
|
|
|
|
|
auto graph = ctx->CreateGraph();
|
|
|
|
|
|
|
|
|
|
tim::vx::ShapeType io_shape({1});
|
|
|
|
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
|
|
|
|
|
io_shape, tim::vx::TensorAttribute::INPUT);
|
|
|
|
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32,
|
|
|
|
|
io_shape, tim::vx::TensorAttribute::OUTPUT);
|
|
|
|
|
|
|
|
|
|
auto input_tensor_x = graph->CreateTensor(input_spec);
|
|
|
|
|
auto input_tensor_y = graph->CreateTensor(input_spec);
|
|
|
|
|
auto output_tensor = graph->CreateTensor(output_spec);
|
|
|
|
|
|
|
|
|
|
std::vector<float> in_data_x = { 1 };
|
|
|
|
|
std::vector<float> in_data_y = { 0 };
|
|
|
|
|
std::vector<float> golden = { std::numeric_limits<float>::infinity() };
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(input_tensor_x->CopyDataToTensor(in_data_x.data(), in_data_x.size()*4));
|
|
|
|
|
EXPECT_TRUE(input_tensor_y->CopyDataToTensor(in_data_y.data(), in_data_y.size()*4));
|
|
|
|
|
auto op = graph->CreateOperation<tim::vx::ops::Div>();
|
|
|
|
|
(*op).BindInputs({input_tensor_x, input_tensor_y}).BindOutputs({output_tensor});
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(graph->Compile());
|
|
|
|
|
EXPECT_TRUE(graph->Run());
|
|
|
|
|
std::vector<float> output(1);
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
|
|
|
|
EXPECT_EQ(golden, output);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(Div, shape_5_1_broadcast_uint8) {
|
|
|
|
|
auto ctx = tim::vx::Context::Create();
|
|
|
|
|
auto graph = ctx->CreateGraph();
|
|
|
|
|
|
|
|
|
|
tim::vx::ShapeType in_shape_x({1});
|
|
|
|
|
tim::vx::ShapeType in_shape_y({5, 1});
|
|
|
|
|
tim::vx::ShapeType out_shape({5, 1});
|
|
|
|
|
tim::vx::Quantization quant(tim::vx::QuantType::ASYMMETRIC, 1, 0);
|
|
|
|
|
tim::vx::Quantization quant_out(tim::vx::QuantType::ASYMMETRIC, 0.5, 0);
|
|
|
|
|
tim::vx::TensorSpec input_spec_x(tim::vx::DataType::UINT8,
|
|
|
|
|
in_shape_x, tim::vx::TensorAttribute::INPUT, quant);
|
|
|
|
|
tim::vx::TensorSpec input_spec_y(tim::vx::DataType::UINT8,
|
|
|
|
|
in_shape_y, tim::vx::TensorAttribute::INPUT, quant);
|
|
|
|
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::UINT8,
|
|
|
|
|
out_shape, tim::vx::TensorAttribute::OUTPUT, quant_out);
|
|
|
|
|
|
|
|
|
|
auto input_tensor_x = graph->CreateTensor(input_spec_x);
|
|
|
|
|
auto input_tensor_y = graph->CreateTensor(input_spec_y);
|
|
|
|
|
auto output_tensor = graph->CreateTensor(output_spec);
|
|
|
|
|
|
|
|
|
|
std::vector<uint8_t> in_data_x = { 255 };
|
|
|
|
|
std::vector<uint8_t> in_data_y = { 1, 2, 3, 0, 255 };
|
|
|
|
|
std::vector<uint8_t> golden = { 255, 255, 170, 255, 2 };
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(input_tensor_x->CopyDataToTensor(in_data_x.data(), in_data_x.size()));
|
|
|
|
|
EXPECT_TRUE(input_tensor_y->CopyDataToTensor(in_data_y.data(), in_data_y.size()));
|
|
|
|
|
auto op = graph->CreateOperation<tim::vx::ops::Div>();
|
|
|
|
|
(*op).BindInputs({input_tensor_x, input_tensor_y}).BindOutputs({output_tensor});
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(graph->Compile());
|
|
|
|
|
EXPECT_TRUE(graph->Run());
|
|
|
|
|
std::vector<uint8_t> output(5);
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
|
|
|
|
EXPECT_EQ(golden, output);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(Div, shape_5_1_broadcast_scale_uint8) {
|
|
|
|
|
auto ctx = tim::vx::Context::Create();
|
|
|
|
|
auto graph = ctx->CreateGraph();
|
|
|
|
|
|
|
|
|
|
tim::vx::ShapeType in_shape_x({1});
|
|
|
|
|
tim::vx::ShapeType in_shape_y({5, 1});
|
|
|
|
|
tim::vx::ShapeType out_shape({5, 1});
|
|
|
|
|
tim::vx::Quantization quant(tim::vx::QuantType::ASYMMETRIC, 1, 0);
|
|
|
|
|
tim::vx::Quantization quant_out(tim::vx::QuantType::ASYMMETRIC, 0.5, 0);
|
|
|
|
|
tim::vx::TensorSpec input_spec_x(tim::vx::DataType::UINT8,
|
|
|
|
|
in_shape_x, tim::vx::TensorAttribute::INPUT, quant);
|
|
|
|
|
tim::vx::TensorSpec input_spec_y(tim::vx::DataType::UINT8,
|
|
|
|
|
in_shape_y, tim::vx::TensorAttribute::INPUT, quant);
|
|
|
|
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::UINT8,
|
|
|
|
|
out_shape, tim::vx::TensorAttribute::OUTPUT, quant_out);
|
|
|
|
|
|
|
|
|
|
auto input_tensor_x = graph->CreateTensor(input_spec_x);
|
|
|
|
|
auto input_tensor_y = graph->CreateTensor(input_spec_y);
|
|
|
|
|
auto output_tensor = graph->CreateTensor(output_spec);
|
|
|
|
|
|
|
|
|
|
std::vector<uint8_t> in_data_x = { 128 };
|
|
|
|
|
std::vector<uint8_t> in_data_y = { 1, 2, 3, 0, 255 };
|
|
|
|
|
std::vector<uint8_t> golden = { 128, 64, 43, 255, 1 };
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(input_tensor_x->CopyDataToTensor(in_data_x.data(), in_data_x.size()));
|
|
|
|
|
EXPECT_TRUE(input_tensor_y->CopyDataToTensor(in_data_y.data(), in_data_y.size()));
|
|
|
|
|
auto op = graph->CreateOperation<tim::vx::ops::Div>(0.5f);
|
|
|
|
|
(*op).BindInputs({input_tensor_x, input_tensor_y}).BindOutputs({output_tensor});
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(graph->Compile());
|
|
|
|
|
EXPECT_TRUE(graph->Run());
|
|
|
|
|
std::vector<uint8_t> output(5);
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
2022-02-21 18:34:44 +08:00
|
|
|
EXPECT_TRUE(ArraysMatch(golden, output, (uint8_t)1));
|
2021-11-04 10:44:52 +08:00
|
|
|
}
|
2021-12-30 13:31:30 +08:00
|
|
|
|
|
|
|
|
TEST(Div, Div_uint8) {
|
|
|
|
|
auto context = tim::vx::Context::Create();
|
|
|
|
|
auto graph = context->CreateGraph();
|
|
|
|
|
|
|
|
|
|
tim::vx::ShapeType input_shape({2, 3, 1, 1});
|
|
|
|
|
tim::vx::Quantization input_quant(tim::vx::QuantType::ASYMMETRIC, 1.0, 0);
|
|
|
|
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::UINT8, input_shape,
|
|
|
|
|
tim::vx::TensorAttribute::INPUT, input_quant);
|
|
|
|
|
uint8_t data1[] = {1, 2, 3, 4, 5, 6};
|
|
|
|
|
uint8_t data2[] = {2, 2, 2, 2, 2, 2};
|
|
|
|
|
auto input1 = graph->CreateTensor(input_spec, data1);
|
|
|
|
|
auto input2 = graph->CreateTensor(input_spec, data2);
|
|
|
|
|
|
|
|
|
|
tim::vx::ShapeType output_shape({2, 3, 1, 1});
|
|
|
|
|
tim::vx::Quantization output_quant(tim::vx::QuantType::ASYMMETRIC, 1.0, 0);
|
|
|
|
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::UINT8, output_shape,
|
|
|
|
|
tim::vx::TensorAttribute::OUTPUT,
|
|
|
|
|
output_quant);
|
|
|
|
|
auto output = graph->CreateTensor(output_spec);
|
|
|
|
|
|
|
|
|
|
auto op = graph->CreateOperation<tim::vx::ops::Div>();
|
|
|
|
|
(*op).BindInputs({input1, input2}).BindOutputs({output});
|
|
|
|
|
|
|
|
|
|
if (!graph->Compile()) {
|
|
|
|
|
std::cout << "Compile graph fail." << std::endl;
|
|
|
|
|
EXPECT_TRUE(-1);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
graph->PrintGraph();
|
|
|
|
|
|
|
|
|
|
if (!graph->Run()) {
|
|
|
|
|
std::cout << "Run graph fail." << std::endl;
|
|
|
|
|
EXPECT_TRUE(-1);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
std::vector<uint8_t> output_data;
|
|
|
|
|
std::vector<uint8_t> golden={0,1,2,2,2,3,0,0,0,0};
|
|
|
|
|
output_data.resize(1 * 10);
|
|
|
|
|
if (!output->CopyDataFromTensor(output_data.data())) {
|
|
|
|
|
std::cout << "Copy output data fail." << std::endl;
|
|
|
|
|
EXPECT_TRUE(-1);
|
|
|
|
|
}
|
|
|
|
|
|
2022-03-01 10:54:56 +08:00
|
|
|
EXPECT_TRUE(ArraysMatch(golden, output_data, (uint8_t)1));
|
2022-08-08 16:17:25 +08:00
|
|
|
}
|
|
|
|
|
|
2022-09-06 17:12:20 +08:00
|
|
|
TEST(Div, DISABLED_Div_int32) {
|
2022-08-08 16:17:25 +08:00
|
|
|
auto context = tim::vx::Context::Create();
|
|
|
|
|
auto graph = context->CreateGraph();
|
|
|
|
|
|
|
|
|
|
tim::vx::ShapeType input_shape({1, 2, 2, 1});
|
|
|
|
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::INT32, input_shape,
|
|
|
|
|
tim::vx::TensorAttribute::INPUT);
|
|
|
|
|
int32_t data1[] = {-2, 2, -15, 8};
|
|
|
|
|
int32_t data2[] = {5, -2, -3, 5};
|
|
|
|
|
auto input1 = graph->CreateTensor(input_spec, data1);
|
|
|
|
|
auto input2 = graph->CreateTensor(input_spec, data2);
|
|
|
|
|
|
|
|
|
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::INT32, input_shape,
|
|
|
|
|
tim::vx::TensorAttribute::OUTPUT);
|
|
|
|
|
auto output = graph->CreateTensor(output_spec);
|
|
|
|
|
|
|
|
|
|
auto op = graph->CreateOperation<tim::vx::ops::Div>();
|
|
|
|
|
(*op).BindInputs({input1, input2}).BindOutputs({output});
|
|
|
|
|
|
|
|
|
|
if (!graph->Compile()) {
|
|
|
|
|
std::cout << "Compile graph fail." << std::endl;
|
|
|
|
|
EXPECT_TRUE(-1);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
graph->PrintGraph();
|
|
|
|
|
|
|
|
|
|
if (!graph->Run()) {
|
|
|
|
|
std::cout << "Run graph fail." << std::endl;
|
|
|
|
|
EXPECT_TRUE(-1);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
std::vector<int32_t> output_data;
|
2022-08-22 17:00:34 +08:00
|
|
|
std::vector<int32_t> golden = {0, -1, 5, 2};
|
2022-08-08 16:17:25 +08:00
|
|
|
output_data.resize(golden.size());
|
|
|
|
|
if (!output->CopyDataFromTensor(output_data.data())) {
|
|
|
|
|
std::cout << "Copy output data fail." << std::endl;
|
|
|
|
|
EXPECT_TRUE(-1);
|
|
|
|
|
}
|
|
|
|
|
// div can have an error of 1 according to different rounding rules
|
|
|
|
|
EXPECT_TRUE(ArraysMatch(golden, output_data, 1));
|
|
|
|
|
}
|
|
|
|
|
|
2022-09-06 17:12:20 +08:00
|
|
|
TEST(Div, DISABLED_Div_int32_broadcast) {
|
2022-08-08 16:17:25 +08:00
|
|
|
auto context = tim::vx::Context::Create();
|
|
|
|
|
auto graph = context->CreateGraph();
|
|
|
|
|
|
|
|
|
|
tim::vx::ShapeType input1_shape({2,2,1,2,1});
|
|
|
|
|
tim::vx::ShapeType input2_shape({1});
|
|
|
|
|
tim::vx::TensorSpec input1_spec(tim::vx::DataType::INT32, input1_shape,
|
|
|
|
|
tim::vx::TensorAttribute::INPUT);
|
|
|
|
|
tim::vx::TensorSpec input2_spec(tim::vx::DataType::INT32, input2_shape,
|
|
|
|
|
tim::vx::TensorAttribute::INPUT);
|
|
|
|
|
int32_t data1[] = {-20, 21, 7, 8, 11, -123, -42, -48};
|
|
|
|
|
int32_t data2[] = {3};
|
|
|
|
|
auto input1 = graph->CreateTensor(input1_spec, data1);
|
|
|
|
|
auto input2 = graph->CreateTensor(input2_spec, data2);
|
|
|
|
|
|
|
|
|
|
tim::vx::ShapeType output_shape({2,2,1,2,1});
|
|
|
|
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::INT32, output_shape,
|
|
|
|
|
tim::vx::TensorAttribute::OUTPUT);
|
|
|
|
|
auto output = graph->CreateTensor(output_spec);
|
|
|
|
|
|
|
|
|
|
auto op = graph->CreateOperation<tim::vx::ops::Div>();
|
|
|
|
|
(*op).BindInputs({input1, input2}).BindOutputs({output});
|
|
|
|
|
|
|
|
|
|
if (!graph->Compile()) {
|
|
|
|
|
std::cout << "Compile graph fail." << std::endl;
|
|
|
|
|
EXPECT_TRUE(-1);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
graph->PrintGraph();
|
|
|
|
|
|
|
|
|
|
if (!graph->Run()) {
|
|
|
|
|
std::cout << "Run graph fail." << std::endl;
|
|
|
|
|
EXPECT_TRUE(-1);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
std::vector<int32_t> output_data;
|
2022-08-22 17:00:34 +08:00
|
|
|
std::vector<int32_t> golden = {-7, 7, 2, 3, 4, -41, -14, -16};
|
2022-08-08 16:17:25 +08:00
|
|
|
output_data.resize(golden.size());
|
|
|
|
|
if (!output->CopyDataFromTensor(output_data.data())) {
|
|
|
|
|
std::cout << "Copy output data fail." << std::endl;
|
|
|
|
|
EXPECT_TRUE(-1);
|
|
|
|
|
}
|
|
|
|
|
// div can have an error of 1 according to different rounding rules
|
|
|
|
|
EXPECT_TRUE(ArraysMatch(golden, output_data, 1));
|
2022-11-08 17:05:51 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(Minimum, shape_1_1_2_1_1_3_broadcast_int32) {
|
|
|
|
|
auto ctx = tim::vx::Context::Create();
|
|
|
|
|
auto graph = ctx->CreateGraph();
|
|
|
|
|
|
|
|
|
|
tim::vx::ShapeType in_shape_x({1, 1, 2, 1, 3});
|
|
|
|
|
tim::vx::ShapeType in_shape_y({1});
|
|
|
|
|
tim::vx::ShapeType out_shape({1, 1, 2, 1, 3});
|
|
|
|
|
tim::vx::TensorSpec input_spec_x(tim::vx::DataType::INT32,
|
|
|
|
|
in_shape_x, tim::vx::TensorAttribute::INPUT);
|
|
|
|
|
tim::vx::TensorSpec input_spec_y(tim::vx::DataType::INT32,
|
|
|
|
|
in_shape_y, tim::vx::TensorAttribute::INPUT);
|
|
|
|
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::INT32,
|
|
|
|
|
out_shape, tim::vx::TensorAttribute::OUTPUT);
|
|
|
|
|
|
|
|
|
|
auto input_tensor_x = graph->CreateTensor(input_spec_x);
|
|
|
|
|
auto input_tensor_y = graph->CreateTensor(input_spec_y);
|
|
|
|
|
auto output_tensor = graph->CreateTensor(output_spec);
|
|
|
|
|
|
|
|
|
|
std::vector<int> in_data_x = { 1, 0, -1, -2, 3, 11 };
|
|
|
|
|
std::vector<int> in_data_y = { 2 };
|
|
|
|
|
std::vector<int> golden = { 1, 0, -1, -2, 2, 2 };
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(input_tensor_x->CopyDataToTensor(in_data_x.data(), in_data_x.size()*4));
|
|
|
|
|
EXPECT_TRUE(input_tensor_y->CopyDataToTensor(in_data_y.data(), in_data_y.size()*4));
|
|
|
|
|
auto op = graph->CreateOperation<tim::vx::ops::Minimum>();
|
|
|
|
|
(*op).BindInputs({input_tensor_x, input_tensor_y}).BindOutputs({output_tensor});
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(graph->Compile());
|
|
|
|
|
EXPECT_TRUE(graph->Run());
|
|
|
|
|
std::vector<int> output(golden.size());
|
|
|
|
|
|
|
|
|
|
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
|
|
|
|
EXPECT_EQ(golden, output);
|
2021-12-30 13:31:30 +08:00
|
|
|
}
|