Add Op MaxpoolWithArgmax
Signed-off-by: Kainan Cha <kainan.zha@verisilicon.com>
This commit is contained in:
parent
fae5cede7a
commit
18a928ee69
|
|
@ -0,0 +1,66 @@
|
|||
/****************************************************************************
|
||||
*
|
||||
* Copyright (c) 2021 Vivante Corporation
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||
* copy of this software and associated documentation files (the "Software"),
|
||||
* to deal in the Software without restriction, including without limitation
|
||||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
* and/or sell copies of the Software, and to permit persons to whom the
|
||||
* Software is furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
* DEALINGS IN THE SOFTWARE.
|
||||
*
|
||||
*****************************************************************************/
|
||||
#ifndef TIM_VX_OPS_MAXPOOLWITHARGMAX_H_
|
||||
#define TIM_VX_OPS_MAXPOOLWITHARGMAX_H_
|
||||
|
||||
#include <array>
|
||||
|
||||
#include "tim/vx/operation.h"
|
||||
#include "tim/vx/types.h"
|
||||
|
||||
namespace tim {
|
||||
namespace vx {
|
||||
namespace ops {
|
||||
|
||||
/**
|
||||
* ## MaxpoolWithArgmax
|
||||
*
|
||||
* Performs an 2-D Max pooling operation and return indices
|
||||
*
|
||||
* - padding : AUTO, VALID or SAME.
|
||||
* - ksize : filter size.
|
||||
* - stride : stride along each spatial axis.
|
||||
* - round_type : CEILING or FLOOR.
|
||||
*/
|
||||
|
||||
class MaxpoolWithArgmax : public Operation {
|
||||
public:
|
||||
MaxpoolWithArgmax(Graph* graph, PadType padding,
|
||||
const std::array<uint32_t, 2>& ksize,
|
||||
const std::array<uint32_t, 2>& stride,
|
||||
RoundType round_type = RoundType::FLOOR,
|
||||
DataLayout layout = DataLayout::WHCN);
|
||||
|
||||
protected:
|
||||
const PadType padding_;
|
||||
const std::array<uint32_t, 2> ksize_;
|
||||
const std::array<uint32_t, 2> stride_;
|
||||
const RoundType round_type_;
|
||||
};
|
||||
|
||||
} // namespace ops
|
||||
} // namespace vx
|
||||
} // namespace tim
|
||||
|
||||
#endif /* TIM_VX_OPS_MAXPOOLWITHARGMAX_H_ */
|
||||
|
|
@ -244,6 +244,14 @@ static vsi_bool op_setup
|
|||
)
|
||||
{
|
||||
vsi_bool ret = TRUE;
|
||||
vsi_nn_compute_padding(
|
||||
inputs[0]->attr.size,
|
||||
self->nn_param.pool.ksize,
|
||||
self->nn_param.pool.stride,
|
||||
NULL,
|
||||
self->nn_param.pool.pad_type,
|
||||
self->nn_param.pool.pad
|
||||
);
|
||||
|
||||
if( VSI_NN_DIM_AUTO == outputs[0]->attr.dim_num )
|
||||
{
|
||||
|
|
|
|||
|
|
@ -25,7 +25,7 @@ Reorg|REORG|Mapped|[darknet.reorg](https://github.com/pjreddie/darknet/blob/mast
|
|||
||VARIABLE|Unmapped|[tf.variable](https://tensorflow.google.cn/api_docs/python/tf/Variable)
|
||||
L2Normalization|L2_NORMALIZE|Mapped|[tf.math.l2_normalize](https://tensorflow.google.cn/api_docs/python/tf/math/l2_normalize)
|
||||
FullyConnected|FCL2|Mapped|[tf.keras.layers.Dense](https://tensorflow.google.cn/api_docs/python/tf/keras/layers/Dense)
|
||||
||POOLWITHARGMAX|Unmapped|[tf.nn.max_pool_with_argmax](https://tensorflow.google.cn/api_docs/python/tf/nn/max_pool_with_argmax)
|
||||
|MaxpoolWithArgmax|POOLWITHARGMAX|Mapped|[tf.nn.max_pool_with_argmax](https://tensorflow.google.cn/api_docs/python/tf/nn/max_pool_with_argmax)
|
||||
ArgMax|ARGMAX|Mapped|[tf.math.argmax](https://tensorflow.google.cn/api_docs/python/tf/math/argmax)
|
||||
Maximum|MAXIMUM|Mapped|[tf.math.maximum](https://tensorflow.google.cn/api_docs/python/tf/math/maximum)
|
||||
||CROP|Unmapped
|
||||
|
|
|
|||
|
|
@ -0,0 +1,57 @@
|
|||
/****************************************************************************
|
||||
*
|
||||
* Copyright (c) 2021 Vivante Corporation
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||
* copy of this software and associated documentation files (the "Software"),
|
||||
* to deal in the Software without restriction, including without limitation
|
||||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
* and/or sell copies of the Software, and to permit persons to whom the
|
||||
* Software is furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
* DEALINGS IN THE SOFTWARE.
|
||||
*
|
||||
*****************************************************************************/
|
||||
#include "tim/vx/ops/maxpoolwithargmax.h"
|
||||
|
||||
#include "operation_private.h"
|
||||
#include "type_utils.h"
|
||||
#include "vsi_nn_pub.h"
|
||||
|
||||
namespace tim {
|
||||
namespace vx {
|
||||
namespace ops {
|
||||
|
||||
MaxpoolWithArgmax::MaxpoolWithArgmax(Graph* graph, PadType padding,
|
||||
const std::array<uint32_t, 2>& ksize,
|
||||
const std::array<uint32_t, 2>& stride,
|
||||
RoundType round_type,
|
||||
DataLayout layout)
|
||||
: Operation(graph, VSI_NN_OP_POOLWITHARGMAX, 1, 2, layout),
|
||||
padding_(padding),
|
||||
ksize_(ksize),
|
||||
stride_(stride),
|
||||
round_type_(round_type) {
|
||||
this->impl()->node()->nn_param.pool.type = TranslatePoolType(PoolType::MAX);
|
||||
this->impl()->node()->nn_param.pool.round_type =
|
||||
TranslateRoundType(round_type_);
|
||||
this->impl()->node()->nn_param.pool.ksize[0] = ksize_[0];
|
||||
this->impl()->node()->nn_param.pool.ksize[1] = ksize_[1];
|
||||
this->impl()->node()->nn_param.pool.stride[0] = stride_[0];
|
||||
this->impl()->node()->nn_param.pool.stride[1] = stride_[1];
|
||||
this->impl()->node()->nn_param.pool.pad_type = TranslatePadType(padding_);
|
||||
this->SetRoundingPolicy(OverflowPolicy::SATURATE, RoundingPolicy::RTNE, round_type_);
|
||||
}
|
||||
|
||||
} // namespace ops
|
||||
} // namespace vx
|
||||
} // namespace tim
|
||||
|
|
@ -0,0 +1,123 @@
|
|||
/****************************************************************************
|
||||
*
|
||||
* Copyright (c) 2021 Vivante Corporation
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||
* copy of this software and associated documentation files (the "Software"),
|
||||
* to deal in the Software without restriction, including without limitation
|
||||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
* and/or sell copies of the Software, and to permit persons to whom the
|
||||
* Software is furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
* DEALINGS IN THE SOFTWARE.
|
||||
*
|
||||
*****************************************************************************/
|
||||
#include "tim/vx/context.h"
|
||||
#include "tim/vx/graph.h"
|
||||
#include "tim/vx/ops/maxpoolwithargmax.h"
|
||||
|
||||
#include "gtest/gtest.h"
|
||||
|
||||
TEST(MaxpoolWithArgmax, shape_3_3_1_fp32_kernel_2_stride_2) {
|
||||
auto ctx = tim::vx::Context::Create();
|
||||
auto graph = ctx->CreateGraph();
|
||||
|
||||
tim::vx::ShapeType in_shape({3, 3, 1});
|
||||
tim::vx::ShapeType out_shape({2, 2, 1});
|
||||
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
|
||||
in_shape, tim::vx::TensorAttribute::INPUT);
|
||||
tim::vx::TensorSpec output_spec_indices(tim::vx::DataType::UINT8,
|
||||
out_shape, tim::vx::TensorAttribute::OUTPUT);
|
||||
tim::vx::TensorSpec output_spec_values(tim::vx::DataType::FLOAT32,
|
||||
out_shape, tim::vx::TensorAttribute::OUTPUT);
|
||||
|
||||
auto input_tensor = graph->CreateTensor(input_spec);
|
||||
auto output_tensor_indices = graph->CreateTensor(output_spec_indices);
|
||||
auto output_tensor_values = graph->CreateTensor(output_spec_values);
|
||||
|
||||
std::vector<float> in_data = {
|
||||
1, 2, 3,
|
||||
4, 5, 6,
|
||||
7, 8, 9 };
|
||||
std::vector<float> values_golden = {
|
||||
5, 6,
|
||||
8, 9 };
|
||||
std::vector<uint8_t> indices_golden = {
|
||||
3, 2,
|
||||
1, 0 };
|
||||
|
||||
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size()*4));
|
||||
std::array<uint32_t, 2> ksize = {2, 2};
|
||||
std::array<uint32_t, 2> stride = {2, 2};
|
||||
auto op = graph->CreateOperation<tim::vx::ops::MaxpoolWithArgmax>(
|
||||
tim::vx::PadType::VALID, ksize, stride);
|
||||
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor_values, output_tensor_indices});
|
||||
|
||||
EXPECT_TRUE(graph->Compile());
|
||||
EXPECT_TRUE(graph->Run());
|
||||
std::vector<float> output_values(4);
|
||||
std::vector<uint8_t> output_indices(4);
|
||||
|
||||
EXPECT_TRUE(output_tensor_values->CopyDataFromTensor(output_values.data()));
|
||||
EXPECT_TRUE(output_tensor_indices->CopyDataFromTensor(output_indices.data()));
|
||||
EXPECT_EQ(values_golden, output_values);
|
||||
EXPECT_EQ(indices_golden, output_indices);
|
||||
}
|
||||
|
||||
TEST(MaxpoolWithArgmax, shape_4_4_1_uint8_kernel_2_stride_2) {
|
||||
auto ctx = tim::vx::Context::Create();
|
||||
auto graph = ctx->CreateGraph();
|
||||
|
||||
tim::vx::ShapeType in_shape({4, 4, 1});
|
||||
tim::vx::ShapeType out_shape({2, 2, 1});
|
||||
tim::vx::Quantization io_quant(tim::vx::QuantType::ASYMMETRIC, 1, 0);
|
||||
tim::vx::TensorSpec input_spec(tim::vx::DataType::UINT8,
|
||||
in_shape, tim::vx::TensorAttribute::INPUT, io_quant);
|
||||
tim::vx::TensorSpec output_spec_indices(tim::vx::DataType::UINT8,
|
||||
out_shape, tim::vx::TensorAttribute::OUTPUT);
|
||||
tim::vx::TensorSpec output_spec_values(tim::vx::DataType::UINT8,
|
||||
out_shape, tim::vx::TensorAttribute::OUTPUT, io_quant);
|
||||
|
||||
auto input_tensor = graph->CreateTensor(input_spec);
|
||||
auto output_tensor_indices = graph->CreateTensor(output_spec_indices);
|
||||
auto output_tensor_values = graph->CreateTensor(output_spec_values);
|
||||
|
||||
std::vector<uint8_t> in_data = {
|
||||
1, 2, 3, 3,
|
||||
4, 5, 6, 6,
|
||||
7, 8, 9, 9,
|
||||
10, 11, 12, 12 };
|
||||
std::vector<uint8_t> values_golden = {
|
||||
5, 6,
|
||||
11, 12};
|
||||
std::vector<uint8_t> indices_golden = {
|
||||
3, 2,
|
||||
3, 2};
|
||||
|
||||
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size()));
|
||||
std::array<uint32_t, 2> ksize = {2, 2};
|
||||
std::array<uint32_t, 2> stride = {2, 2};
|
||||
auto op = graph->CreateOperation<tim::vx::ops::MaxpoolWithArgmax>(
|
||||
tim::vx::PadType::VALID, ksize, stride);
|
||||
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor_values, output_tensor_indices});
|
||||
|
||||
EXPECT_TRUE(graph->Compile());
|
||||
EXPECT_TRUE(graph->Run());
|
||||
std::vector<uint8_t> output_values(4);
|
||||
std::vector<uint8_t> output_indices(4);
|
||||
|
||||
EXPECT_TRUE(output_tensor_values->CopyDataFromTensor(output_values.data()));
|
||||
EXPECT_TRUE(output_tensor_indices->CopyDataFromTensor(output_indices.data()));
|
||||
EXPECT_EQ(values_golden, output_values);
|
||||
EXPECT_EQ(indices_golden, output_indices);
|
||||
}
|
||||
|
||||
Loading…
Reference in New Issue