|
|
|
|
@ -7,11 +7,14 @@
|
|
|
|
|
- [ArgMin/ArgMax](#argminargmax)
|
|
|
|
|
- [Batch2Space](#batch2space)
|
|
|
|
|
- [BatchNorm](#batchnorm)
|
|
|
|
|
- [bidirectional sequence rnn](#bidirectional-sequence-rnn)
|
|
|
|
|
- [Bidirectional sequence rnn for onnx](#bidirectional-sequence-rnn-for-onnx)
|
|
|
|
|
- [Broadcast](#broadcast)
|
|
|
|
|
- [Clip](#clip)
|
|
|
|
|
- [Concat](#concat)
|
|
|
|
|
- [Conv2d](#conv2d)
|
|
|
|
|
- [Conv3d](#conv3d)
|
|
|
|
|
- [Cumsum](#cumsum)
|
|
|
|
|
- [DeConv2d](#deconv2d)
|
|
|
|
|
- [DeConv1d](#deconv1d)
|
|
|
|
|
- [DepthToSpace](#depthtospace)
|
|
|
|
|
@ -24,6 +27,7 @@
|
|
|
|
|
- [Minimum](#minimum)
|
|
|
|
|
- [Maximum](#maximum)
|
|
|
|
|
- [FloorDiv](#floordiv)
|
|
|
|
|
- [EmbeddingLookup](#embeddinglookup)
|
|
|
|
|
- [Erf](#erf)
|
|
|
|
|
- [FullyConnected](#fullyconnected)
|
|
|
|
|
- [Gather](#gather)
|
|
|
|
|
@ -31,20 +35,29 @@
|
|
|
|
|
- [GatherNd](#gathernd)
|
|
|
|
|
- [GroupedConv1d](#groupedconv1d)
|
|
|
|
|
- [GroupedConv2d](#groupedconv2d)
|
|
|
|
|
- [GRUCell](#grucell)
|
|
|
|
|
- [HashtableLookup](#hashtablelookup)
|
|
|
|
|
- [L2Normalization](#l2normalization)
|
|
|
|
|
- [LocalResponseNormalization](#localresponsenormalization)
|
|
|
|
|
- [And](#and)
|
|
|
|
|
- [Or](#or)
|
|
|
|
|
- [LogSoftmax](#logsoftmax)
|
|
|
|
|
- [Matmul](#matmul)
|
|
|
|
|
- [Max_pool3d](#max_pool3d)
|
|
|
|
|
- [MaxpooGrad](#maxpoograd)
|
|
|
|
|
- [MaxpoolWithArgmax](#maxpoolwithargmax)
|
|
|
|
|
- [MaxpoolWithArgmax2](#maxpoolwithargmax2)
|
|
|
|
|
- [MaxUnpool2d](#maxunpool2d)
|
|
|
|
|
- [Mod](#mod)
|
|
|
|
|
- [Moments](#moments)
|
|
|
|
|
- [NBG](#nbg)
|
|
|
|
|
- [OneHot](#onehot)
|
|
|
|
|
- [Pad](#pad)
|
|
|
|
|
- [PadV2](#padv2)
|
|
|
|
|
- [Pool1d](#pool1d)
|
|
|
|
|
- [Classic Pool1d](#classic-pool1d)
|
|
|
|
|
- [Global Pool1d](#global-pool1d)
|
|
|
|
|
- [Adaptive Pool1d](#adaptive-pool1d)
|
|
|
|
|
- [Pool2d](#pool2d)
|
|
|
|
|
- [Classic Pool2d](#classic-pool2d)
|
|
|
|
|
- [Global Pool2d](#global-pool2d)
|
|
|
|
|
@ -70,11 +83,17 @@
|
|
|
|
|
- [RoiAlign](#roialign)
|
|
|
|
|
- [RoiPool](#roipool)
|
|
|
|
|
- [ScatterND](#scatternd)
|
|
|
|
|
- [ScatterND_ONNX_V16](#scatternd_onnx_v16)
|
|
|
|
|
- [Select](#select)
|
|
|
|
|
- [DataConvert](#dataconvert)
|
|
|
|
|
- [Neg](#neg)
|
|
|
|
|
- [Abs](#abs)
|
|
|
|
|
- [Sin](#sin)
|
|
|
|
|
- [Cos](#cos)
|
|
|
|
|
- [Tan](#tan)
|
|
|
|
|
- [ATan](#atan)
|
|
|
|
|
- [ACosh](#acosh)
|
|
|
|
|
- [ATanh](#atanh)
|
|
|
|
|
- [Exp](#exp)
|
|
|
|
|
- [Log](#log)
|
|
|
|
|
- [Sqrt](#sqrt)
|
|
|
|
|
@ -84,6 +103,7 @@
|
|
|
|
|
- [Floor](#floor)
|
|
|
|
|
- [Ceil](#ceil)
|
|
|
|
|
- [Cast](#cast)
|
|
|
|
|
- [Rcp](#rcp)
|
|
|
|
|
- [Slice](#slice)
|
|
|
|
|
- [Softmax](#softmax)
|
|
|
|
|
- [Space2Batch](#space2batch)
|
|
|
|
|
@ -96,7 +116,10 @@
|
|
|
|
|
- [Tile](#tile)
|
|
|
|
|
- [Topk](#topk)
|
|
|
|
|
- [Transpose](#transpose)
|
|
|
|
|
- [UnidirectionalSequenceGRU](#unidirectionalsequencegru)
|
|
|
|
|
- [Unidirectional sequence lstm](#unidirectional-sequence-lstm)
|
|
|
|
|
- [Unidirectional sequence rnn](#unidirectional-sequence-rnn)
|
|
|
|
|
- [Unidirectional sequence rnn for onnx](#unidirectional-sequence-rnn-for-onnx)
|
|
|
|
|
- [Unstack](#unstack)
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="operators"></a>
|
|
|
|
|
@ -177,6 +200,14 @@ $$\hat x_i\leftarrow \frac{x_i-\mu_\mathcal{B}}{\sqrt{\sigma_\mathcal{B}^2+\epsi
|
|
|
|
|
|
|
|
|
|
$$y_i=\gamma\hat x_i+\beta\equiv BN_{\gamma,\beta}(x_i)$$
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="bidirectional-sequence-rnn"></a>
|
|
|
|
|
## bidirectional sequence rnn
|
|
|
|
|
how to bind input/output: take bidirectional_sequence_rnn_test.cc
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="bidirectional-sequence-rnn-for-onnx"></a>
|
|
|
|
|
## Bidirectional sequence rnn for onnx
|
|
|
|
|
how to bind input/output: take unidirectional_sequence_rnn_ext_test.cc
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="broadcast"></a>
|
|
|
|
|
## Broadcast
|
|
|
|
|
|
|
|
|
|
@ -187,7 +218,7 @@ Input:
|
|
|
|
|
|
|
|
|
|
Attribute:
|
|
|
|
|
- shape: the shape which broadcast to.
|
|
|
|
|
- dimensions(optional): Which dimension in the target shape each dimension
|
|
|
|
|
- dimensions(optional): Which dimension in the target shape each dimension
|
|
|
|
|
of the operand shape corresponds to. For BroadcastInDim.
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="clip"></a>
|
|
|
|
|
@ -210,7 +241,8 @@ Depthwise Conv2D / Group Conv2D / Dilation Conv2D.
|
|
|
|
|
|
|
|
|
|
Input:
|
|
|
|
|
- input [WHCN or CWHN].
|
|
|
|
|
- kernel [ WHIcOc ] (Ic: Input Channels. Oc: Output Channels).
|
|
|
|
|
- kernel [ WHIcOc ] (Ic: Input Channels. Oc: Output Channels) normally,
|
|
|
|
|
[WHIc(Oc)1] for Depthwise Conv.
|
|
|
|
|
- bias [ O ]. Optional.
|
|
|
|
|
|
|
|
|
|
Attribute:
|
|
|
|
|
@ -246,6 +278,19 @@ but the value is different. multiplier = weights / group.
|
|
|
|
|
- input_layout : WHDCN or WHCDN.
|
|
|
|
|
- kernel_layout : WHDIcOc
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="cumsum"></a>
|
|
|
|
|
## Cumsum
|
|
|
|
|
|
|
|
|
|
Compute the cumulative sum of the tensor along the giveb axis. By default, it
|
|
|
|
|
will do the sum inclusively meaning the first element is copied as is. Through
|
|
|
|
|
an exclusive attribute, this behavior can change to exclude the first element.
|
|
|
|
|
It can also perform summation in the opposite direction of the axis by setting
|
|
|
|
|
reverse atrribution to 1.
|
|
|
|
|
All the attributes can be combined.
|
|
|
|
|
- axis : Specify the cumsum eperforming along which axis.Default = 0.
|
|
|
|
|
- exclusive : If exclusive = 1, perform exclusive cumsum.
|
|
|
|
|
- reverse : If reverse = 1, the cumsum is performed in the opposite direction.
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="deconv2d"></a>
|
|
|
|
|
## DeConv2d
|
|
|
|
|
|
|
|
|
|
@ -276,11 +321,12 @@ but is actually the transpose (gradient) of Conv2D rather than an actual deconvo
|
|
|
|
|
|
|
|
|
|
- weights : the channel number for weight tensor.
|
|
|
|
|
- ksize : the length for weight tensor.
|
|
|
|
|
- padding : AUTO, VALID or SAME.
|
|
|
|
|
- padtype : AUTO, VALID or SAME.**
|
|
|
|
|
- pad : pad value for each spatial axis.
|
|
|
|
|
- stride : stride along each spatial axis.
|
|
|
|
|
- output_padding : specifying the amount of padding along the height and width of
|
|
|
|
|
the output tensor.
|
|
|
|
|
- output_padding : additional padding lines added to the output tensor, default is zero
|
|
|
|
|
|
|
|
|
|
Caution**: PadType is not really supported yet, will be supported in future.
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="depthtospace"></a>
|
|
|
|
|
## DepthToSpace
|
|
|
|
|
@ -349,6 +395,11 @@ Maximum(x, y) : max(x, y). This operation supports broadcasting.
|
|
|
|
|
|
|
|
|
|
FloorDiv(x, y): floor( x / y ). This operation supports broadcasting.
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="embeddinglookup"></a>
|
|
|
|
|
## EmbeddingLookup
|
|
|
|
|
|
|
|
|
|
Looks up sub-tensors in the input tensor with specific indices(idx)
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="erf"></a>
|
|
|
|
|
## Erf
|
|
|
|
|
|
|
|
|
|
@ -360,7 +411,7 @@ Computes the Gauss error function of x element-wise.
|
|
|
|
|
## FullyConnected
|
|
|
|
|
|
|
|
|
|
Denotes a fully (densely) connected layer, which connects all elements in the
|
|
|
|
|
input tensor with each element in the output tensor.
|
|
|
|
|
input tensor with each element in the output tensor.
|
|
|
|
|
|
|
|
|
|
- axis: Describes the axis of the inputs when coerced to 2D.
|
|
|
|
|
- weights: the output channel number for weight tensor.
|
|
|
|
|
@ -369,6 +420,7 @@ input tensor with each element in the output tensor.
|
|
|
|
|
## Gather
|
|
|
|
|
|
|
|
|
|
Gather slices from input, **axis** according to **indices**.
|
|
|
|
|
batch_dims means in which dimension to repeat the value according to indices.
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="gatherelements"></a>
|
|
|
|
|
## GatherElements
|
|
|
|
|
@ -424,6 +476,20 @@ Attribute:
|
|
|
|
|
- group_number: Split conv to n group.
|
|
|
|
|
- layout : WHCN or CWHN.
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="grucell"></a>
|
|
|
|
|
## GRUCell
|
|
|
|
|
|
|
|
|
|
- num_units : dimensionality of the output space.
|
|
|
|
|
- activation : Activation function to use.
|
|
|
|
|
- recurrent_activation : Activation function to use for the recurrent step.
|
|
|
|
|
- reset_after : whether to apply reset gate after or before matrix multiplication.
|
|
|
|
|
False = "before", True = "after".
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="hashtablelookup"></a>
|
|
|
|
|
## HashtableLookup
|
|
|
|
|
|
|
|
|
|
Looks up sub-tensors in the input tensor using a key-value map.
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="l2normalization"></a>
|
|
|
|
|
## L2Normalization
|
|
|
|
|
|
|
|
|
|
@ -444,6 +510,11 @@ Applies Local Response Normalization along the depth dimension:
|
|
|
|
|
sqr_sum[a, b, c, d] = sum(
|
|
|
|
|
pow(input[a, b, c, d - depth_radius : d + depth_radius + 1], 2))
|
|
|
|
|
output = input / pow((bias + alpha * sqr_sum), beta)
|
|
|
|
|
output = input / pow((bias + alpha * sqr_sum), beta)
|
|
|
|
|
size : width of the 1-D normalization window.
|
|
|
|
|
bias : An offset (usually positive to avoid dividing by 0).
|
|
|
|
|
alpha : A scale factor.
|
|
|
|
|
beta : An exponent.
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="and"></a>
|
|
|
|
|
@ -475,11 +546,29 @@ Multiplies matrix a by matrix b, producing a * b.
|
|
|
|
|
- adjoint_a: If True, a is conjugated and transposed before multiplication.
|
|
|
|
|
- adjoint_b: If True, b is conjugated and transposed before multiplication.
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="max_pool3d"></a>
|
|
|
|
|
## Max_pool3d
|
|
|
|
|
|
|
|
|
|
Applies a 3D max pooling over an input Tensor which can be regarded as a composition of 3D planes.
|
|
|
|
|
|
|
|
|
|
Input:
|
|
|
|
|
- input [WHDCN]
|
|
|
|
|
- kernel [ WHD ]
|
|
|
|
|
|
|
|
|
|
Attribute:
|
|
|
|
|
- round_type : CEILING or FLOOR
|
|
|
|
|
- ksize : the height and width for kernel tensor.
|
|
|
|
|
- stride : stride along each spatial axis.
|
|
|
|
|
- pad : pad value for each spatial axis. (left, right, top, bottom, front, rear).
|
|
|
|
|
- pad_type : AUTO, VALID or SAME.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="maxpoograd"></a>
|
|
|
|
|
## MaxpooGrad
|
|
|
|
|
|
|
|
|
|
Acquire the gradient of 2-D Max pooling operation's input tensor. \
|
|
|
|
|
Like the tensorflow_XLA op SelectAndScatter, see https://tensorflow.google.cn/xla/operation_semantics?hl=en#selectandscatter.
|
|
|
|
|
Like the tensorflow_XLA op SelectAndScatter, see \
|
|
|
|
|
https://tensorflow.google.cn/xla/operation_semantics?hl=en#selectandscatter.
|
|
|
|
|
|
|
|
|
|
- padding : AUTO, VALID or SAME.
|
|
|
|
|
- ksize : filter size.
|
|
|
|
|
@ -491,6 +580,10 @@ Like the tensorflow_XLA op SelectAndScatter, see https://tensorflow.google.cn/xl
|
|
|
|
|
- 0 : input tensor of 2-D Max pooling.
|
|
|
|
|
- 1 : gradient of 2-D Max pooling output tensor.
|
|
|
|
|
|
|
|
|
|
* Outputs:
|
|
|
|
|
|
|
|
|
|
- 0 : updated tensor of 2-D Max pooling input.
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="maxpoolwithargmax"></a>
|
|
|
|
|
## MaxpoolWithArgmax
|
|
|
|
|
|
|
|
|
|
@ -519,6 +612,19 @@ Performs an 2-D Max pooling operation upsample
|
|
|
|
|
- stride : stride along each spatial axis.
|
|
|
|
|
- ksize : filter size.
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="mod"></a>
|
|
|
|
|
## Mod
|
|
|
|
|
|
|
|
|
|
Mod performs element-wise binary modulus.
|
|
|
|
|
The sign of the remainder is the same as that of the Divisor as default.
|
|
|
|
|
|
|
|
|
|
Mod operator can also behave like C fmod() or numpy.fmod when input type is floating
|
|
|
|
|
point. The sign of the remainder however, will be the same as the Dividend. Attribute
|
|
|
|
|
fmod is set to decide the mod behivior.
|
|
|
|
|
|
|
|
|
|
- fmod : If the input type is floating point, then fmod must be set to 1.Default = 0
|
|
|
|
|
means integer mod.
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="moments"></a>
|
|
|
|
|
## Moments
|
|
|
|
|
|
|
|
|
|
@ -549,11 +655,54 @@ Create a one-hot tensor.
|
|
|
|
|
|
|
|
|
|
Pads a tensor.
|
|
|
|
|
|
|
|
|
|
- const_val : the value to pad.
|
|
|
|
|
- const_val : the int32 value to pad.
|
|
|
|
|
- pad_mode : the mode of pad.
|
|
|
|
|
- front_size : Add pad values to the left and top.
|
|
|
|
|
- back_size : Add pad values to the right and bottom.
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="padv2"></a>
|
|
|
|
|
## PadV2
|
|
|
|
|
|
|
|
|
|
Pads a tensor.
|
|
|
|
|
|
|
|
|
|
- const_val : the float value to pad.
|
|
|
|
|
- pad_mode : the mode of pad.
|
|
|
|
|
- front_size : Add pad values to the left and top.
|
|
|
|
|
- back_size : Add pad values to the right and bottom.
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="pool1d"></a>
|
|
|
|
|
## Pool1d
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="classic-pool1d"></a>
|
|
|
|
|
### Classic Pool1d
|
|
|
|
|
|
|
|
|
|
Performs an 1-D pooling operation.
|
|
|
|
|
|
|
|
|
|
- type : MAX, AVG, L2 or AVG_ANDROID.
|
|
|
|
|
- padding : AUTO, VALID or SAME.
|
|
|
|
|
- pad : Specify the number of pad values for left, right.
|
|
|
|
|
- ksize : filter size.
|
|
|
|
|
- stride : stride along each spatial axis.
|
|
|
|
|
- round_type : CEILING or FLOOR.
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="global-pool1d"></a>
|
|
|
|
|
### Global Pool1d
|
|
|
|
|
|
|
|
|
|
- type : MAX, AVG, L2 or AVG_ANDROID.
|
|
|
|
|
- input_size : input size(only [W])
|
|
|
|
|
- round_type : CEILING or FLOOR.
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="adaptive-pool1d"></a>
|
|
|
|
|
### Adaptive Pool1d
|
|
|
|
|
|
|
|
|
|
Same as torch.nn.AdaptiveXXXPool1d.
|
|
|
|
|
|
|
|
|
|
- type : MAX, AVG, L2 or AVG_ANDROID.
|
|
|
|
|
- input_size : input size(only [W])
|
|
|
|
|
- output_size : output size(only [W])
|
|
|
|
|
- round_type : CEILING or FLOOR.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="pool2d"></a>
|
|
|
|
|
## Pool2d
|
|
|
|
|
|
|
|
|
|
@ -758,7 +907,7 @@ Select and scale the feature map of each region of interest to a unified output
|
|
|
|
|
size by max-pooling.
|
|
|
|
|
|
|
|
|
|
pool_type : only support max-pooling (MAX)
|
|
|
|
|
scale : The ratio of image to feature map (Range: 0 < scale <= 1)
|
|
|
|
|
scale : The ratio of image to feature map (Range: 0 < scale <= 1)
|
|
|
|
|
size : The size of roi pooling (height/width)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -769,6 +918,13 @@ Scatter updates into a new tensor according to indices.
|
|
|
|
|
|
|
|
|
|
- shape : The shape of the resulting tensor.
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="scatternd_onnx_v16"></a>
|
|
|
|
|
## ScatterND_ONNX_V16
|
|
|
|
|
|
|
|
|
|
Scatter updates into a new tensor according to indices.
|
|
|
|
|
|
|
|
|
|
- reduction: Type of reduction to apply: none (default), add, mul, max, min.
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="select"></a>
|
|
|
|
|
## Select
|
|
|
|
|
|
|
|
|
|
@ -795,6 +951,31 @@ Abs(x) : x if x >= 0; -x if x < 0.
|
|
|
|
|
|
|
|
|
|
Sin(x) : sin(x)
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="cos"></a>
|
|
|
|
|
## Cos
|
|
|
|
|
|
|
|
|
|
Cos(x) : cos(x)
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="tan"></a>
|
|
|
|
|
## Tan
|
|
|
|
|
|
|
|
|
|
Tan(x) : tan(x)
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="atan"></a>
|
|
|
|
|
## ATan
|
|
|
|
|
|
|
|
|
|
ATan(x) : arctan(x)
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="acosh"></a>
|
|
|
|
|
## ACosh
|
|
|
|
|
|
|
|
|
|
ACosh(x) : arccosh(x)
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="atanh"></a>
|
|
|
|
|
## ATanh
|
|
|
|
|
|
|
|
|
|
Tan(x) : arctanh(x)
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="exp"></a>
|
|
|
|
|
## Exp
|
|
|
|
|
|
|
|
|
|
@ -841,6 +1022,10 @@ returns the largest integer more than or equal to a given number.
|
|
|
|
|
Change the format from input tensor to output tensor. This operation ignores
|
|
|
|
|
the scale and zeroPoint of quanized tensors.
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="rcp"></a>
|
|
|
|
|
## Rcp
|
|
|
|
|
Computes the reciprocal of input element-wise.
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="slice"></a>
|
|
|
|
|
## Slice
|
|
|
|
|
|
|
|
|
|
@ -948,6 +1133,7 @@ Length must be the same as the number of dimensions in input.
|
|
|
|
|
Finds values and indices of the k largest entries for the last dimension.
|
|
|
|
|
|
|
|
|
|
- k : Number of top elements to look for along the last dimension.
|
|
|
|
|
-axis : Dimension on which to do th sort. Default is 0.
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="transpose"></a>
|
|
|
|
|
## Transpose
|
|
|
|
|
@ -960,10 +1146,31 @@ If perm is not given, it is set to (n-1...0), where n is the rank of the input
|
|
|
|
|
tensor. Hence by default, this operation performs a regular matrix transpose on
|
|
|
|
|
2-D input Tensors.
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="unidirectionalsequencegru"></a>
|
|
|
|
|
## UnidirectionalSequenceGRU
|
|
|
|
|
|
|
|
|
|
- num_units : dimensionality of the output space.
|
|
|
|
|
- activation : Activation function to use.
|
|
|
|
|
- recurrent_activation : Activation function to use for the recurrent step.
|
|
|
|
|
- reset_after : whether to apply reset gate after or before matrix multiplication.
|
|
|
|
|
False = "before", True = "after".
|
|
|
|
|
- return_sequences : Whether to return the last output in the output sequence,
|
|
|
|
|
or the full sequence. Default: False.
|
|
|
|
|
- time_major : If True, the inputs and outputs will be in shape [feature, batch, timesteps],
|
|
|
|
|
in the False case, it will be [feature, timesteps, batch].
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="unidirectional-sequence-lstm"></a>
|
|
|
|
|
## Unidirectional sequence lstm
|
|
|
|
|
how to bind input/output: take unidirectional_sequence_lstm_test.cc
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="unidirectional-sequence-rnn"></a>
|
|
|
|
|
## Unidirectional sequence rnn
|
|
|
|
|
how to bind input/output: take unidirectional_sequence_rnn_test.cc
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="unidirectional-sequence-rnn-for-onnx"></a>
|
|
|
|
|
## Unidirectional sequence rnn for onnx
|
|
|
|
|
how to bind input/output: take unidirectional_sequence_rnn_ext_test.cc
|
|
|
|
|
|
|
|
|
|
<a class="mk-toclify" id="unstack"></a>
|
|
|
|
|
## Unstack
|
|
|
|
|
|
|
|
|
|
|