Added cases for reduce sum (#441)
Signed-off-by: Chen Xin <jack.chen@verisilicon.com> Co-authored-by: Chen Xin <jack.chen@verisilicon.com>
This commit is contained in:
parent
cfe8c808bd
commit
96c9d5df01
|
|
@ -0,0 +1,126 @@
|
||||||
|
/****************************************************************************
|
||||||
|
*
|
||||||
|
* Copyright (c) 2022 Vivante Corporation
|
||||||
|
*
|
||||||
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
||||||
|
* copy of this software and associated documentation files (the "Software"),
|
||||||
|
* to deal in the Software without restriction, including without limitation
|
||||||
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||||
|
* and/or sell copies of the Software, and to permit persons to whom the
|
||||||
|
* Software is furnished to do so, subject to the following conditions:
|
||||||
|
*
|
||||||
|
* The above copyright notice and this permission notice shall be included in
|
||||||
|
* all copies or substantial portions of the Software.
|
||||||
|
*
|
||||||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||||
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||||
|
* DEALINGS IN THE SOFTWARE.
|
||||||
|
*
|
||||||
|
*****************************************************************************/
|
||||||
|
#include "tim/vx/context.h"
|
||||||
|
#include "tim/vx/graph.h"
|
||||||
|
#include "tim/vx/ops.h"
|
||||||
|
#include "test_utils.h"
|
||||||
|
#include "gtest/gtest.h"
|
||||||
|
|
||||||
|
TEST(Reduce_sum, NotKeepDims) {
|
||||||
|
auto ctx = tim::vx::Context::Create();
|
||||||
|
auto graph = ctx->CreateGraph();
|
||||||
|
|
||||||
|
tim::vx::ShapeType input_shape({2, 3, 1});
|
||||||
|
tim::vx::ShapeType output_shape({2, 1});
|
||||||
|
tim::vx::Quantization quant(tim::vx::QuantType::ASYMMETRIC, 0.00784313772,
|
||||||
|
127);
|
||||||
|
|
||||||
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
|
||||||
|
tim::vx::TensorAttribute::INPUT);
|
||||||
|
tim::vx::TensorSpec dc_spec1(tim::vx::DataType::UINT8, {0, 0, 0},
|
||||||
|
tim::vx::TensorAttribute::TRANSIENT, quant);
|
||||||
|
auto input_tensor = graph->CreateTensor(input_spec);
|
||||||
|
auto dc_tensor1 = graph->CreateTensor(dc_spec1);
|
||||||
|
auto dc1_op = graph->CreateOperation<tim::vx::ops::DataConvert>();
|
||||||
|
(*dc1_op).BindInputs({input_tensor}).BindOutputs({dc_tensor1});
|
||||||
|
|
||||||
|
tim::vx::TensorSpec reduce_sum_spec(tim::vx::DataType::UINT8, {0, 0, 0},
|
||||||
|
tim::vx::TensorAttribute::TRANSIENT,
|
||||||
|
quant);
|
||||||
|
auto reduce_sum_out = graph->CreateTensor(reduce_sum_spec);
|
||||||
|
std::vector<int32_t> axis = {1};
|
||||||
|
auto reduce_sum =
|
||||||
|
graph->CreateOperation<tim::vx::ops::ReduceSum>(axis, false);
|
||||||
|
(*reduce_sum).BindInputs({dc_tensor1}).BindOutputs({reduce_sum_out});
|
||||||
|
|
||||||
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
|
||||||
|
tim::vx::TensorAttribute::OUTPUT);
|
||||||
|
auto output_tensor = graph->CreateTensor(output_spec);
|
||||||
|
auto dc2_op = graph->CreateOperation<tim::vx::ops::DataConvert>();
|
||||||
|
(*dc2_op).BindInputs({reduce_sum_out}).BindOutputs({output_tensor});
|
||||||
|
|
||||||
|
std::vector<float> in_data = {0.4, 0.2, 0.3, 0.4, 0.5, 0.6};
|
||||||
|
std::vector<float> golden = {
|
||||||
|
1.003922,
|
||||||
|
1.003922,
|
||||||
|
};
|
||||||
|
|
||||||
|
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size()));
|
||||||
|
|
||||||
|
EXPECT_TRUE(graph->Compile());
|
||||||
|
EXPECT_TRUE(graph->Run());
|
||||||
|
|
||||||
|
std::vector<float> output(golden.size());
|
||||||
|
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||||
|
EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f));
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(Reduce_sum, KeepDims) {
|
||||||
|
auto ctx = tim::vx::Context::Create();
|
||||||
|
auto graph = ctx->CreateGraph();
|
||||||
|
|
||||||
|
tim::vx::ShapeType input_shape({2, 3});
|
||||||
|
tim::vx::ShapeType output_shape({1, 3});
|
||||||
|
tim::vx::Quantization quant(tim::vx::QuantType::ASYMMETRIC, 0.00784313772,
|
||||||
|
127);
|
||||||
|
|
||||||
|
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
|
||||||
|
tim::vx::TensorAttribute::INPUT);
|
||||||
|
tim::vx::TensorSpec dc_spec1(tim::vx::DataType::UINT8, {0, 0, 0},
|
||||||
|
tim::vx::TensorAttribute::TRANSIENT, quant);
|
||||||
|
auto input_tensor = graph->CreateTensor(input_spec);
|
||||||
|
auto dc_tensor1 = graph->CreateTensor(dc_spec1);
|
||||||
|
auto dc1_op = graph->CreateOperation<tim::vx::ops::DataConvert>();
|
||||||
|
(*dc1_op).BindInputs({input_tensor}).BindOutputs({dc_tensor1});
|
||||||
|
|
||||||
|
tim::vx::TensorSpec reduce_sum_spec(tim::vx::DataType::UINT8, {0, 0, 0},
|
||||||
|
tim::vx::TensorAttribute::TRANSIENT,
|
||||||
|
quant);
|
||||||
|
auto reduce_sum_out = graph->CreateTensor(reduce_sum_spec);
|
||||||
|
std::vector<int32_t> axis = {0};
|
||||||
|
auto reduce_sum = graph->CreateOperation<tim::vx::ops::ReduceSum>(axis, true);
|
||||||
|
(*reduce_sum).BindInputs({dc_tensor1}).BindOutputs({reduce_sum_out});
|
||||||
|
|
||||||
|
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
|
||||||
|
tim::vx::TensorAttribute::OUTPUT);
|
||||||
|
auto output_tensor = graph->CreateTensor(output_spec);
|
||||||
|
auto dc2_op = graph->CreateOperation<tim::vx::ops::DataConvert>();
|
||||||
|
(*dc2_op).BindInputs({reduce_sum_out}).BindOutputs({output_tensor});
|
||||||
|
|
||||||
|
std::vector<float> in_data = {0.4, 0.2, 0.3, 0.4, 0.5, 0.6};
|
||||||
|
std::vector<float> golden = {
|
||||||
|
0.596078,
|
||||||
|
0.698039,
|
||||||
|
1.003922,
|
||||||
|
};
|
||||||
|
|
||||||
|
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size()));
|
||||||
|
|
||||||
|
EXPECT_TRUE(graph->Compile());
|
||||||
|
EXPECT_TRUE(graph->Run());
|
||||||
|
|
||||||
|
std::vector<float> output(golden.size());
|
||||||
|
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
|
||||||
|
EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f));
|
||||||
|
}
|
||||||
Loading…
Reference in New Issue