TIM-VX/src/tim/vx/ops/reduce_sum_test.cc

126 lines
5.5 KiB
C++

/****************************************************************************
*
* Copyright (c) 2022 Vivante Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*****************************************************************************/
#include "tim/vx/context.h"
#include "tim/vx/graph.h"
#include "tim/vx/ops.h"
#include "test_utils.h"
#include "gtest/gtest.h"
TEST(Reduce_sum, NotKeepDims) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({2, 3, 1});
tim::vx::ShapeType output_shape({2, 1});
tim::vx::Quantization quant(tim::vx::QuantType::ASYMMETRIC, 0.00784313772,
127);
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec dc_spec1(tim::vx::DataType::UINT8, {0, 0, 0},
tim::vx::TensorAttribute::TRANSIENT, quant);
auto input_tensor = graph->CreateTensor(input_spec);
auto dc_tensor1 = graph->CreateTensor(dc_spec1);
auto dc1_op = graph->CreateOperation<tim::vx::ops::DataConvert>();
(*dc1_op).BindInputs({input_tensor}).BindOutputs({dc_tensor1});
tim::vx::TensorSpec reduce_sum_spec(tim::vx::DataType::UINT8, {0, 0, 0},
tim::vx::TensorAttribute::TRANSIENT,
quant);
auto reduce_sum_out = graph->CreateTensor(reduce_sum_spec);
std::vector<int32_t> axis = {1};
auto reduce_sum =
graph->CreateOperation<tim::vx::ops::ReduceSum>(axis, false);
(*reduce_sum).BindInputs({dc_tensor1}).BindOutputs({reduce_sum_out});
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
tim::vx::TensorAttribute::OUTPUT);
auto output_tensor = graph->CreateTensor(output_spec);
auto dc2_op = graph->CreateOperation<tim::vx::ops::DataConvert>();
(*dc2_op).BindInputs({reduce_sum_out}).BindOutputs({output_tensor});
std::vector<float> in_data = {0.4, 0.2, 0.3, 0.4, 0.5, 0.6};
std::vector<float> golden = {
1.003922,
1.003922,
};
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size()));
EXPECT_TRUE(graph->Compile());
EXPECT_TRUE(graph->Run());
std::vector<float> output(golden.size());
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f));
}
TEST(Reduce_sum, KeepDims) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({2, 3});
tim::vx::ShapeType output_shape({1, 3});
tim::vx::Quantization quant(tim::vx::QuantType::ASYMMETRIC, 0.00784313772,
127);
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec dc_spec1(tim::vx::DataType::UINT8, {0, 0, 0},
tim::vx::TensorAttribute::TRANSIENT, quant);
auto input_tensor = graph->CreateTensor(input_spec);
auto dc_tensor1 = graph->CreateTensor(dc_spec1);
auto dc1_op = graph->CreateOperation<tim::vx::ops::DataConvert>();
(*dc1_op).BindInputs({input_tensor}).BindOutputs({dc_tensor1});
tim::vx::TensorSpec reduce_sum_spec(tim::vx::DataType::UINT8, {0, 0, 0},
tim::vx::TensorAttribute::TRANSIENT,
quant);
auto reduce_sum_out = graph->CreateTensor(reduce_sum_spec);
std::vector<int32_t> axis = {0};
auto reduce_sum = graph->CreateOperation<tim::vx::ops::ReduceSum>(axis, true);
(*reduce_sum).BindInputs({dc_tensor1}).BindOutputs({reduce_sum_out});
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
tim::vx::TensorAttribute::OUTPUT);
auto output_tensor = graph->CreateTensor(output_spec);
auto dc2_op = graph->CreateOperation<tim::vx::ops::DataConvert>();
(*dc2_op).BindInputs({reduce_sum_out}).BindOutputs({output_tensor});
std::vector<float> in_data = {0.4, 0.2, 0.3, 0.4, 0.5, 0.6};
std::vector<float> golden = {
0.596078,
0.698039,
1.003922,
};
EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size()));
EXPECT_TRUE(graph->Compile());
EXPECT_TRUE(graph->Run());
std::vector<float> output(golden.size());
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f));
}