2024-01-05 20:33:01 +08:00
|
|
|
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
|
|
# Copyright 2018 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
""" PyTorch T5 model."""
|
|
|
|
|
|
|
|
import copy
|
|
|
|
import math
|
|
|
|
import os
|
|
|
|
import warnings
|
|
|
|
from typing import Optional, Tuple, Union
|
|
|
|
|
|
|
|
import torch
|
|
|
|
from torch import nn
|
|
|
|
from torch.utils.checkpoint import checkpoint
|
|
|
|
from transformers.activations import ACT2FN
|
|
|
|
from transformers.modeling_outputs import BaseModelOutputWithPastAndCrossAttentions
|
|
|
|
from transformers.modeling_utils import (
|
|
|
|
PreTrainedModel,
|
|
|
|
find_pruneable_heads_and_indices,
|
|
|
|
prune_linear_layer,
|
|
|
|
)
|
|
|
|
from transformers.utils import (
|
|
|
|
DUMMY_INPUTS,
|
|
|
|
DUMMY_MASK,
|
|
|
|
add_start_docstrings,
|
|
|
|
add_start_docstrings_to_model_forward,
|
|
|
|
is_torch_fx_proxy,
|
|
|
|
replace_return_docstrings,
|
|
|
|
)
|
|
|
|
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
|
|
|
|
|
|
|
from modelscope.metainfo import Models
|
|
|
|
from modelscope.models.base import Model, Tensor, TorchModel
|
|
|
|
from modelscope.models.builder import MODELS
|
|
|
|
from modelscope.outputs import AttentionBackboneModelOutput, Seq2SeqModelOutput
|
|
|
|
from modelscope.utils.constant import Tasks
|
|
|
|
from modelscope.utils.logger import get_logger
|
|
|
|
from configuration import T5Config
|
|
|
|
|
|
|
|
logger = get_logger()
|
|
|
|
|
|
|
|
|
|
|
|
###################################################
|
|
|
|
# This is a conversion method from TF 1.0 to PyTorch
|
|
|
|
# More details: https://medium.com/huggingface/from-tensorflow-to-pytorch-265f40ef2a28
|
|
|
|
####################################################
|
|
|
|
def load_tf_weights_in_t5(model, config, tf_checkpoint_path):
|
|
|
|
"""Load tf checkpoints in a pytorch model."""
|
|
|
|
try:
|
|
|
|
import re
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import tensorflow as tf
|
|
|
|
except ImportError:
|
|
|
|
logger.error(
|
|
|
|
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
|
|
|
"https://www.tensorflow.org/install/ for installation instructions."
|
|
|
|
)
|
|
|
|
raise
|
|
|
|
tf_path = os.path.abspath(tf_checkpoint_path)
|
|
|
|
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
|
|
|
# Load weights from TF model
|
|
|
|
init_vars = tf.train.list_variables(tf_path)
|
|
|
|
names = []
|
|
|
|
tf_weights = {}
|
|
|
|
for name, shape in init_vars:
|
|
|
|
logger.info(f"Loading TF weight {name} with shape {shape}")
|
|
|
|
array = tf.train.load_variable(tf_path, name)
|
|
|
|
names.append(name)
|
|
|
|
tf_weights[name] = array
|
|
|
|
|
|
|
|
for txt_name in names:
|
|
|
|
name = txt_name.split("/")
|
|
|
|
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
|
|
|
# which are not required for using pretrained model
|
|
|
|
if any(
|
|
|
|
n
|
|
|
|
in [
|
|
|
|
"adam_v",
|
|
|
|
"adam_m",
|
|
|
|
"AdamWeightDecayOptimizer",
|
|
|
|
"AdamWeightDecayOptimizer_1",
|
|
|
|
"global_step",
|
|
|
|
]
|
|
|
|
for n in name
|
|
|
|
):
|
|
|
|
logger.info(f"Skipping {'/'.join(name)}")
|
|
|
|
tf_weights.pop(txt_name, None)
|
|
|
|
continue
|
|
|
|
if "_slot_" in name[-1]:
|
|
|
|
logger.info(f"Skipping {'/'.join(name)}")
|
|
|
|
tf_weights.pop(txt_name, None)
|
|
|
|
continue
|
|
|
|
pointer = model
|
|
|
|
array = tf_weights[txt_name]
|
|
|
|
|
|
|
|
for m_name in name:
|
|
|
|
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
|
|
|
|
scope_names = re.split(r"_(\d+)", m_name)
|
|
|
|
else:
|
|
|
|
scope_names = [m_name]
|
|
|
|
if scope_names[0] in ["kernel", "scale", "embedding"]:
|
|
|
|
pointer = getattr(pointer, "weight")
|
|
|
|
elif scope_names[0] == "self_attention":
|
|
|
|
pointer = getattr(pointer, "layer")
|
|
|
|
pointer = pointer[0]
|
|
|
|
elif scope_names[0] == "enc_dec_attention":
|
|
|
|
pointer = getattr(pointer, "layer")
|
|
|
|
pointer = pointer[1]
|
|
|
|
elif scope_names[0] == "dense_relu_dense":
|
|
|
|
pointer = getattr(pointer, "layer")
|
|
|
|
pointer = pointer[2]
|
|
|
|
elif scope_names[0] == "rms_norm":
|
|
|
|
if hasattr(pointer, "layer_norm"):
|
|
|
|
pointer = getattr(pointer, "layer_norm")
|
|
|
|
elif hasattr(pointer, "final_layer_norm"):
|
|
|
|
pointer = getattr(pointer, "final_layer_norm")
|
|
|
|
elif scope_names[0] == "scale":
|
|
|
|
pointer = getattr(pointer, "weight")
|
|
|
|
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
|
|
|
|
pointer = getattr(pointer, "bias")
|
|
|
|
elif scope_names[0] == "squad":
|
|
|
|
pointer = getattr(pointer, "classifier")
|
|
|
|
elif scope_names[0] == "decoder" and name[1] == "logits":
|
|
|
|
continue
|
|
|
|
elif scope_names[0] == "logits":
|
|
|
|
pointer = getattr(pointer, "lm_head")
|
|
|
|
elif (
|
|
|
|
scope_names[0] == "wi"
|
|
|
|
and len(scope_names) > 1
|
|
|
|
and scope_names[1].isdigit()
|
|
|
|
):
|
|
|
|
pointer = getattr(pointer, f"wi_{scope_names[1]}")
|
|
|
|
continue
|
|
|
|
else:
|
|
|
|
try:
|
|
|
|
pointer = getattr(pointer, scope_names[0])
|
|
|
|
except AttributeError:
|
|
|
|
logger.info(f"Skipping {'/'.join(name)}")
|
|
|
|
continue
|
|
|
|
if len(scope_names) >= 2:
|
|
|
|
num = int(scope_names[1])
|
|
|
|
pointer = pointer[num]
|
|
|
|
if scope_names[0] not in ["kernel", "scale", "embedding"]:
|
|
|
|
pointer = getattr(pointer, "weight")
|
|
|
|
if scope_names[0] != "embedding":
|
|
|
|
logger.info(f"Transposing numpy weight of shape {array.shape} for {name}")
|
|
|
|
array = np.transpose(array)
|
|
|
|
try:
|
|
|
|
assert (
|
|
|
|
pointer.shape == array.shape
|
|
|
|
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
|
|
|
|
except AssertionError as e:
|
|
|
|
e.args += (pointer.shape, array.shape)
|
|
|
|
raise
|
|
|
|
logger.info(f"Initialize PyTorch weight {name}")
|
|
|
|
pointer.data = torch.from_numpy(array.astype(np.float32))
|
|
|
|
tf_weights.pop(txt_name, None)
|
|
|
|
|
|
|
|
logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}.")
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
class T5LayerNorm(nn.Module):
|
|
|
|
def __init__(self, hidden_size, eps=1e-6):
|
|
|
|
"""
|
|
|
|
Construct a layernorm module in the T5 style. No bias and no subtraction of mean.
|
|
|
|
"""
|
|
|
|
super().__init__()
|
|
|
|
self.weight = nn.Parameter(torch.ones(hidden_size))
|
|
|
|
self.variance_epsilon = eps
|
|
|
|
|
|
|
|
def forward(self, hidden_states):
|
|
|
|
|
|
|
|
# T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
|
|
|
|
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated
|
|
|
|
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
|
|
|
|
# half-precision inputs is done in fp32
|
|
|
|
|
|
|
|
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
|
|
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
|
|
|
|
|
|
|
# convert into half-precision if necessary
|
|
|
|
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
|
|
|
hidden_states = hidden_states.to(self.weight.dtype)
|
|
|
|
|
|
|
|
return self.weight * hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
class T5DenseReluDense(nn.Module):
|
|
|
|
def __init__(self, config: T5Config):
|
|
|
|
super().__init__()
|
|
|
|
self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
|
|
|
|
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
|
|
|
|
self.dropout = nn.Dropout(config.dropout_rate)
|
|
|
|
|
|
|
|
def forward(self, hidden_states):
|
|
|
|
hidden_states = self.wi(hidden_states)
|
|
|
|
hidden_states = nn.functional.relu(hidden_states)
|
|
|
|
hidden_states = self.dropout(hidden_states)
|
|
|
|
hidden_states = self.wo(hidden_states)
|
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
class T5DenseGatedGeluDense(nn.Module):
|
|
|
|
def __init__(self, config: T5Config):
|
|
|
|
super().__init__()
|
|
|
|
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
|
|
|
|
self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
|
|
|
|
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
|
|
|
|
self.dropout = nn.Dropout(config.dropout_rate)
|
|
|
|
self.gelu_act = ACT2FN["gelu_new"]
|
|
|
|
|
|
|
|
def forward(self, hidden_states):
|
|
|
|
hidden_gelu = self.gelu_act(self.wi_0(hidden_states))
|
|
|
|
hidden_linear = self.wi_1(hidden_states)
|
|
|
|
hidden_states = hidden_gelu * hidden_linear
|
|
|
|
hidden_states = self.dropout(hidden_states)
|
|
|
|
hidden_states = self.wo(hidden_states)
|
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
class T5LayerFF(nn.Module):
|
|
|
|
def __init__(self, config: T5Config):
|
|
|
|
super().__init__()
|
|
|
|
if config.feed_forward_proj == "relu":
|
|
|
|
self.DenseReluDense = T5DenseReluDense(config)
|
|
|
|
elif config.feed_forward_proj == "gated-gelu":
|
|
|
|
self.DenseReluDense = T5DenseGatedGeluDense(config)
|
|
|
|
else:
|
|
|
|
raise ValueError(
|
|
|
|
f"{self.config.feed_forward_proj} is not supported. Choose between `relu` and `gated-gelu`"
|
|
|
|
)
|
|
|
|
|
|
|
|
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
|
|
|
self.dropout = nn.Dropout(config.dropout_rate)
|
|
|
|
|
|
|
|
def forward(self, hidden_states):
|
|
|
|
forwarded_states = self.layer_norm(hidden_states)
|
|
|
|
forwarded_states = self.DenseReluDense(forwarded_states)
|
|
|
|
hidden_states = hidden_states + self.dropout(forwarded_states)
|
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
class T5Attention(nn.Module):
|
|
|
|
def __init__(self, config: T5Config, has_relative_attention_bias=False):
|
|
|
|
super().__init__()
|
|
|
|
self.is_decoder = config.is_decoder
|
|
|
|
self.has_relative_attention_bias = has_relative_attention_bias
|
|
|
|
self.relative_attention_num_buckets = config.relative_attention_num_buckets
|
|
|
|
self.relative_attention_max_distance = config.relative_attention_max_distance
|
|
|
|
self.d_model = config.d_model
|
|
|
|
self.key_value_proj_dim = config.d_kv
|
|
|
|
self.n_heads = config.num_heads
|
|
|
|
self.dropout = config.dropout_rate
|
|
|
|
self.inner_dim = self.n_heads * self.key_value_proj_dim
|
|
|
|
|
|
|
|
# Mesh TensorFlow initialization to avoid scaling before softmax
|
|
|
|
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
|
|
|
|
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
|
|
|
|
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
|
|
|
|
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
|
|
|
|
|
|
|
|
if self.has_relative_attention_bias:
|
|
|
|
self.relative_attention_bias = nn.Embedding(
|
|
|
|
self.relative_attention_num_buckets, self.n_heads
|
|
|
|
)
|
|
|
|
self.pruned_heads = set()
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
|
|
|
|
def prune_heads(self, heads):
|
|
|
|
if len(heads) == 0:
|
|
|
|
return
|
|
|
|
heads, index = find_pruneable_heads_and_indices(
|
|
|
|
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
|
|
|
|
)
|
|
|
|
# Prune linear layers
|
|
|
|
self.q = prune_linear_layer(self.q, index)
|
|
|
|
self.k = prune_linear_layer(self.k, index)
|
|
|
|
self.v = prune_linear_layer(self.v, index)
|
|
|
|
self.o = prune_linear_layer(self.o, index, dim=1)
|
|
|
|
# Update hyper params
|
|
|
|
self.n_heads = self.n_heads - len(heads)
|
|
|
|
self.inner_dim = self.key_value_proj_dim * self.n_heads
|
|
|
|
self.pruned_heads = self.pruned_heads.union(heads)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _relative_position_bucket(
|
|
|
|
relative_position, bidirectional=True, num_buckets=32, max_distance=128
|
|
|
|
):
|
|
|
|
"""
|
|
|
|
Adapted from Mesh Tensorflow:
|
|
|
|
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
|
|
|
|
|
|
|
|
Translate relative position to a bucket number for relative attention. The relative position is defined as
|
|
|
|
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
|
|
|
|
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
|
|
|
|
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
|
|
|
|
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
|
|
|
|
This should allow for more graceful generalization to longer sequences than the model has been trained on
|
|
|
|
|
|
|
|
Args:
|
|
|
|
relative_position: an int32 Tensor
|
|
|
|
bidirectional: a boolean - whether the attention is bidirectional
|
|
|
|
num_buckets: an integer
|
|
|
|
max_distance: an integer
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
|
|
|
|
"""
|
|
|
|
relative_buckets = 0
|
|
|
|
if bidirectional:
|
|
|
|
num_buckets //= 2
|
|
|
|
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
|
|
|
|
relative_position = torch.abs(relative_position)
|
|
|
|
else:
|
|
|
|
relative_position = -torch.min(
|
|
|
|
relative_position, torch.zeros_like(relative_position)
|
|
|
|
)
|
|
|
|
# now relative_position is in the range [0, inf)
|
|
|
|
|
|
|
|
# half of the buckets are for exact increments in positions
|
|
|
|
max_exact = num_buckets // 2
|
|
|
|
is_small = relative_position < max_exact
|
|
|
|
|
|
|
|
# The other half of the buckets are for logarithmically bigger bins in
|
|
|
|
# positions up to max_distance
|
|
|
|
relateive_pos_log = torch.log(relative_position.float() / max_exact)
|
|
|
|
max_dis_log = math.log(max_distance / max_exact)
|
|
|
|
origin_relative_position = (
|
|
|
|
relateive_pos_log / max_dis_log * (num_buckets - max_exact)
|
|
|
|
)
|
|
|
|
relative_postion_if_large = max_exact + origin_relative_position.to(torch.long)
|
|
|
|
relative_postion_if_large = torch.min(
|
|
|
|
relative_postion_if_large,
|
|
|
|
torch.full_like(relative_postion_if_large, num_buckets - 1),
|
|
|
|
)
|
|
|
|
|
|
|
|
relative_buckets += torch.where(
|
|
|
|
is_small, relative_position, relative_postion_if_large
|
|
|
|
)
|
|
|
|
return relative_buckets
|
|
|
|
|
|
|
|
def compute_bias(self, query_length, key_length):
|
|
|
|
"""Compute binned relative position bias"""
|
|
|
|
context_position = torch.arange(
|
|
|
|
query_length,
|
|
|
|
dtype=torch.long,
|
|
|
|
device=self.relative_attention_bias.weight.device,
|
|
|
|
)[:, None]
|
|
|
|
memory_position = torch.arange(
|
|
|
|
key_length,
|
|
|
|
dtype=torch.long,
|
|
|
|
device=self.relative_attention_bias.weight.device,
|
|
|
|
)[None, :]
|
|
|
|
relative_position = (
|
|
|
|
memory_position - context_position
|
|
|
|
) # shape (query_length, key_length)
|
|
|
|
relative_position_bucket = self._relative_position_bucket(
|
|
|
|
relative_position, # shape (query_length, key_length)
|
|
|
|
bidirectional=(not self.is_decoder),
|
|
|
|
num_buckets=self.relative_attention_num_buckets,
|
|
|
|
max_distance=self.relative_attention_max_distance,
|
|
|
|
)
|
|
|
|
values = self.relative_attention_bias(
|
|
|
|
relative_position_bucket
|
|
|
|
) # shape (query_length, key_length, num_heads)
|
|
|
|
values = values.permute([2, 0, 1]).unsqueeze(
|
|
|
|
0
|
|
|
|
) # shape (1, num_heads, query_length, key_length)
|
|
|
|
return values
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
hidden_states,
|
|
|
|
mask=None,
|
|
|
|
key_value_states=None,
|
|
|
|
position_bias=None,
|
|
|
|
past_key_value=None,
|
|
|
|
layer_head_mask=None,
|
|
|
|
query_length=None,
|
|
|
|
use_cache=False,
|
|
|
|
output_attentions=False,
|
|
|
|
):
|
|
|
|
"""
|
|
|
|
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
|
|
|
|
"""
|
|
|
|
# Input is (batch_size, seq_length, dim)
|
|
|
|
# Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
|
|
|
|
# past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)
|
|
|
|
batch_size, seq_length = hidden_states.shape[:2]
|
|
|
|
|
|
|
|
real_seq_length = seq_length
|
|
|
|
|
|
|
|
if past_key_value is not None:
|
|
|
|
assert (
|
|
|
|
len(past_key_value) == 2
|
|
|
|
), f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states"
|
|
|
|
real_seq_length += (
|
|
|
|
past_key_value[0].shape[2] if query_length is None else query_length
|
|
|
|
)
|
|
|
|
|
|
|
|
key_length = (
|
|
|
|
real_seq_length if key_value_states is None else key_value_states.shape[1]
|
|
|
|
)
|
|
|
|
|
|
|
|
def shape(states):
|
|
|
|
"""projection"""
|
|
|
|
return states.view(
|
|
|
|
batch_size, -1, self.n_heads, self.key_value_proj_dim
|
|
|
|
).transpose(1, 2)
|
|
|
|
|
|
|
|
def unshape(states):
|
|
|
|
"""reshape"""
|
|
|
|
return (
|
|
|
|
states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)
|
|
|
|
)
|
|
|
|
|
|
|
|
def project(hidden_states, proj_layer, key_value_states, past_key_value):
|
|
|
|
"""projects hidden states correctly to key/query states"""
|
|
|
|
if key_value_states is None:
|
|
|
|
# self-attn
|
|
|
|
# (batch_size, n_heads, seq_length, dim_per_head)
|
|
|
|
hidden_states = shape(proj_layer(hidden_states))
|
|
|
|
elif past_key_value is None:
|
|
|
|
# cross-attn
|
|
|
|
# (batch_size, n_heads, seq_length, dim_per_head)
|
|
|
|
hidden_states = shape(proj_layer(key_value_states))
|
|
|
|
|
|
|
|
if past_key_value is not None:
|
|
|
|
if key_value_states is None:
|
|
|
|
# self-attn
|
|
|
|
# (batch_size, n_heads, key_length, dim_per_head)
|
|
|
|
hidden_states = torch.cat([past_key_value, hidden_states], dim=2)
|
|
|
|
else:
|
|
|
|
# cross-attn
|
|
|
|
hidden_states = past_key_value
|
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
# get query states
|
|
|
|
query_states = shape(
|
|
|
|
self.q(hidden_states)
|
|
|
|
) # (batch_size, n_heads, seq_length, dim_per_head)
|
|
|
|
|
|
|
|
# get key/value states
|
|
|
|
key_states = project(
|
|
|
|
hidden_states,
|
|
|
|
self.k,
|
|
|
|
key_value_states,
|
|
|
|
past_key_value[0] if past_key_value is not None else None,
|
|
|
|
)
|
|
|
|
value_states = project(
|
|
|
|
hidden_states,
|
|
|
|
self.v,
|
|
|
|
key_value_states,
|
|
|
|
past_key_value[1] if past_key_value is not None else None,
|
|
|
|
)
|
|
|
|
|
|
|
|
# compute scores
|
|
|
|
scores = torch.matmul(
|
|
|
|
query_states, key_states.transpose(3, 2)
|
|
|
|
) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
|
|
|
|
|
|
|
|
if position_bias is None:
|
|
|
|
if not self.has_relative_attention_bias:
|
|
|
|
position_bias = torch.zeros(
|
|
|
|
(1, self.n_heads, real_seq_length, key_length),
|
|
|
|
device=scores.device,
|
|
|
|
dtype=scores.dtype,
|
|
|
|
)
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
|
|
position_bias.requires_grad = True
|
|
|
|
else:
|
|
|
|
position_bias = self.compute_bias(real_seq_length, key_length)
|
|
|
|
|
|
|
|
# if key and values are already calculated
|
|
|
|
# we want only the last query position bias
|
|
|
|
if past_key_value is not None:
|
|
|
|
position_bias = position_bias[:, :, -hidden_states.size(1) :, :]
|
|
|
|
|
|
|
|
if mask is not None:
|
|
|
|
position_bias = (
|
|
|
|
position_bias + mask
|
|
|
|
) # (batch_size, n_heads, seq_length, key_length)
|
|
|
|
|
|
|
|
scores += position_bias
|
|
|
|
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(
|
|
|
|
scores
|
|
|
|
) # (batch_size, n_heads, seq_length, key_length)
|
|
|
|
attn_weights = nn.functional.dropout(
|
|
|
|
attn_weights, p=self.dropout, training=self.training
|
|
|
|
) # (batch_size, n_heads, seq_length, key_length)
|
|
|
|
|
|
|
|
# Mask heads if we want to
|
|
|
|
if layer_head_mask is not None:
|
|
|
|
attn_weights = attn_weights * layer_head_mask
|
|
|
|
|
|
|
|
attn_output = unshape(
|
|
|
|
torch.matmul(attn_weights, value_states)
|
|
|
|
) # (batch_size, seq_length, dim)
|
|
|
|
attn_output = self.o(attn_output)
|
|
|
|
|
|
|
|
present_key_value_state = (
|
|
|
|
(key_states, value_states) if (self.is_decoder and use_cache) else None
|
|
|
|
)
|
|
|
|
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)
|
|
|
|
|
|
|
|
if output_attentions:
|
|
|
|
outputs = outputs + (attn_weights,)
|
|
|
|
return outputs
|
|
|
|
|
|
|
|
|
|
|
|
class T5LayerSelfAttention(nn.Module):
|
|
|
|
def __init__(self, config, has_relative_attention_bias=False):
|
|
|
|
super().__init__()
|
|
|
|
self.SelfAttention = T5Attention(
|
|
|
|
config, has_relative_attention_bias=has_relative_attention_bias
|
|
|
|
)
|
|
|
|
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
|
|
|
self.dropout = nn.Dropout(config.dropout_rate)
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
hidden_states,
|
|
|
|
attention_mask=None,
|
|
|
|
position_bias=None,
|
|
|
|
layer_head_mask=None,
|
|
|
|
past_key_value=None,
|
|
|
|
use_cache=False,
|
|
|
|
output_attentions=False,
|
|
|
|
):
|
|
|
|
normed_hidden_states = self.layer_norm(hidden_states)
|
|
|
|
attention_output = self.SelfAttention(
|
|
|
|
normed_hidden_states,
|
|
|
|
mask=attention_mask,
|
|
|
|
position_bias=position_bias,
|
|
|
|
layer_head_mask=layer_head_mask,
|
|
|
|
past_key_value=past_key_value,
|
|
|
|
use_cache=use_cache,
|
|
|
|
output_attentions=output_attentions,
|
|
|
|
)
|
|
|
|
hidden_states = hidden_states + self.dropout(attention_output[0])
|
|
|
|
outputs = (hidden_states,) + attention_output[
|
|
|
|
1:
|
|
|
|
] # add attentions if we output them
|
|
|
|
return outputs
|
|
|
|
|
|
|
|
|
|
|
|
class T5LayerCrossAttention(nn.Module):
|
|
|
|
def __init__(self, config):
|
|
|
|
super().__init__()
|
|
|
|
self.EncDecAttention = T5Attention(config, has_relative_attention_bias=False)
|
|
|
|
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
|
|
|
self.dropout = nn.Dropout(config.dropout_rate)
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
hidden_states,
|
|
|
|
key_value_states,
|
|
|
|
attention_mask=None,
|
|
|
|
position_bias=None,
|
|
|
|
layer_head_mask=None,
|
|
|
|
past_key_value=None,
|
|
|
|
use_cache=False,
|
|
|
|
query_length=None,
|
|
|
|
output_attentions=False,
|
|
|
|
):
|
|
|
|
normed_hidden_states = self.layer_norm(hidden_states)
|
|
|
|
attention_output = self.EncDecAttention(
|
|
|
|
normed_hidden_states,
|
|
|
|
mask=attention_mask,
|
|
|
|
key_value_states=key_value_states,
|
|
|
|
position_bias=position_bias,
|
|
|
|
layer_head_mask=layer_head_mask,
|
|
|
|
past_key_value=past_key_value,
|
|
|
|
use_cache=use_cache,
|
|
|
|
query_length=query_length,
|
|
|
|
output_attentions=output_attentions,
|
|
|
|
)
|
|
|
|
layer_output = hidden_states + self.dropout(attention_output[0])
|
|
|
|
outputs = (layer_output,) + attention_output[
|
|
|
|
1:
|
|
|
|
] # add attentions if we output them
|
|
|
|
return outputs
|
|
|
|
|
|
|
|
|
|
|
|
class T5Block(nn.Module):
|
|
|
|
def __init__(self, config, has_relative_attention_bias=False):
|
|
|
|
super().__init__()
|
|
|
|
self.is_decoder = config.is_decoder
|
|
|
|
self.layer = nn.ModuleList()
|
|
|
|
self.layer.append(
|
|
|
|
T5LayerSelfAttention(
|
|
|
|
config, has_relative_attention_bias=has_relative_attention_bias
|
|
|
|
)
|
|
|
|
)
|
|
|
|
if self.is_decoder:
|
|
|
|
self.layer.append(T5LayerCrossAttention(config))
|
|
|
|
|
|
|
|
self.layer.append(T5LayerFF(config))
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
hidden_states,
|
|
|
|
attention_mask=None,
|
|
|
|
position_bias=None,
|
|
|
|
encoder_hidden_states=None,
|
|
|
|
encoder_attention_mask=None,
|
|
|
|
encoder_decoder_position_bias=None,
|
|
|
|
layer_head_mask=None,
|
|
|
|
cross_attn_layer_head_mask=None,
|
|
|
|
past_key_value=None,
|
|
|
|
use_cache=False,
|
|
|
|
output_attentions=False,
|
|
|
|
return_dict=True,
|
|
|
|
):
|
|
|
|
|
|
|
|
if past_key_value is not None:
|
|
|
|
if not self.is_decoder:
|
|
|
|
logger.warning(
|
|
|
|
"`past_key_values` is passed to the encoder. Please make sure this is intended."
|
|
|
|
)
|
|
|
|
expected_num_past_key_values = 2 if encoder_hidden_states is None else 4
|
|
|
|
|
|
|
|
if len(past_key_value) != expected_num_past_key_values:
|
|
|
|
raise ValueError(
|
|
|
|
f"There should be {expected_num_past_key_values} past states. "
|
|
|
|
f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}"
|
|
|
|
f"Got {len(past_key_value)} past key / value states"
|
|
|
|
)
|
|
|
|
|
|
|
|
self_attn_past_key_value = past_key_value[:2]
|
|
|
|
cross_attn_past_key_value = past_key_value[2:]
|
|
|
|
else:
|
|
|
|
self_attn_past_key_value, cross_attn_past_key_value = None, None
|
|
|
|
|
|
|
|
self_attention_outputs = self.layer[0](
|
|
|
|
hidden_states,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
position_bias=position_bias,
|
|
|
|
layer_head_mask=layer_head_mask,
|
|
|
|
past_key_value=self_attn_past_key_value,
|
|
|
|
use_cache=use_cache,
|
|
|
|
output_attentions=output_attentions,
|
|
|
|
)
|
|
|
|
hidden_states, present_key_value_state = self_attention_outputs[:2]
|
|
|
|
attention_outputs = self_attention_outputs[
|
|
|
|
2:
|
|
|
|
] # Keep self-attention outputs and relative position weights
|
|
|
|
|
|
|
|
# clamp inf values to enable fp16 training
|
|
|
|
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
|
|
|
|
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
|
|
|
hidden_states = torch.clamp(
|
|
|
|
hidden_states, min=-clamp_value, max=clamp_value
|
|
|
|
)
|
|
|
|
|
|
|
|
do_cross_attention = self.is_decoder and encoder_hidden_states is not None
|
|
|
|
if do_cross_attention:
|
|
|
|
# the actual query length is unknown for cross attention
|
|
|
|
# if using past key value states. Need to inject it here
|
|
|
|
if present_key_value_state is not None:
|
|
|
|
query_length = present_key_value_state[0].shape[2]
|
|
|
|
else:
|
|
|
|
query_length = None
|
|
|
|
|
|
|
|
cross_attention_outputs = self.layer[1](
|
|
|
|
hidden_states,
|
|
|
|
key_value_states=encoder_hidden_states,
|
|
|
|
attention_mask=encoder_attention_mask,
|
|
|
|
position_bias=encoder_decoder_position_bias,
|
|
|
|
layer_head_mask=cross_attn_layer_head_mask,
|
|
|
|
past_key_value=cross_attn_past_key_value,
|
|
|
|
query_length=query_length,
|
|
|
|
use_cache=use_cache,
|
|
|
|
output_attentions=output_attentions,
|
|
|
|
)
|
|
|
|
hidden_states = cross_attention_outputs[0]
|
|
|
|
|
|
|
|
# clamp inf values to enable fp16 training
|
|
|
|
if (
|
|
|
|
hidden_states.dtype == torch.float16
|
|
|
|
and torch.isinf(hidden_states).any()
|
|
|
|
):
|
|
|
|
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
|
|
|
hidden_states = torch.clamp(
|
|
|
|
hidden_states, min=-clamp_value, max=clamp_value
|
|
|
|
)
|
|
|
|
|
|
|
|
# Combine self attn and cross attn key value states
|
|
|
|
if present_key_value_state is not None:
|
|
|
|
present_key_value_state = (
|
|
|
|
present_key_value_state + cross_attention_outputs[1]
|
|
|
|
)
|
|
|
|
|
|
|
|
# Keep cross-attention outputs and relative position weights
|
|
|
|
attention_outputs = attention_outputs + cross_attention_outputs[2:]
|
|
|
|
|
|
|
|
# Apply Feed Forward layer
|
|
|
|
hidden_states = self.layer[-1](hidden_states)
|
|
|
|
|
|
|
|
# clamp inf values to enable fp16 training
|
|
|
|
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
|
|
|
|
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
|
|
|
hidden_states = torch.clamp(
|
|
|
|
hidden_states, min=-clamp_value, max=clamp_value
|
|
|
|
)
|
|
|
|
|
|
|
|
outputs = (hidden_states,)
|
|
|
|
|
|
|
|
if use_cache:
|
|
|
|
outputs = outputs + (present_key_value_state,) + attention_outputs
|
|
|
|
else:
|
|
|
|
outputs = outputs + attention_outputs
|
|
|
|
|
|
|
|
# hidden-states, present_key_value_states, (self-attention position
|
|
|
|
# bias), (self-attention weights), (cross-attention position bias),
|
|
|
|
# (cross-attention weights)
|
|
|
|
return outputs
|
|
|
|
|
|
|
|
|
2024-01-06 21:05:39 +08:00
|
|
|
class T5PreTrainedModel(PreTrainedModel):
|
2024-01-05 20:33:01 +08:00
|
|
|
"""
|
|
|
|
An abstract class to handle weights initialization and a simple interface
|
|
|
|
for downloading and loading pretrained models.
|
|
|
|
"""
|
|
|
|
|
|
|
|
config_class = T5Config
|
|
|
|
load_tf_weights = load_tf_weights_in_t5
|
|
|
|
base_model_prefix = "transformer"
|
|
|
|
is_parallelizable = True
|
|
|
|
supports_gradient_checkpointing = True
|
|
|
|
|
|
|
|
def __init__(self, config, **kwargs):
|
2024-01-06 21:05:39 +08:00
|
|
|
super().__init__(config, **kwargs)
|
2024-01-05 20:33:01 +08:00
|
|
|
|
|
|
|
@property
|
|
|
|
def dummy_inputs(self):
|
|
|
|
input_ids = torch.tensor(DUMMY_INPUTS)
|
|
|
|
input_mask = torch.tensor(DUMMY_MASK)
|
|
|
|
dummy_inputs = {
|
|
|
|
"decoder_input_ids": input_ids,
|
|
|
|
"input_ids": input_ids,
|
|
|
|
"decoder_attention_mask": input_mask,
|
|
|
|
}
|
|
|
|
return dummy_inputs
|
|
|
|
|
|
|
|
def _init_weights(self, module):
|
|
|
|
"""Initialize the weights"""
|
|
|
|
factor = (
|
|
|
|
self.config.initializer_factor
|
|
|
|
) # Used for testing weights initialization
|
|
|
|
if isinstance(module, T5LayerNorm):
|
|
|
|
module.weight.data.fill_(factor * 1.0)
|
|
|
|
elif isinstance(module, T5Model):
|
|
|
|
# Mesh TensorFlow embeddings initialization See
|
|
|
|
# https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624
|
|
|
|
module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0)
|
|
|
|
elif isinstance(module, T5DenseReluDense):
|
|
|
|
# Mesh TensorFlow FF initialization See
|
|
|
|
# https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56
|
|
|
|
# and
|
|
|
|
# https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89
|
|
|
|
module.wi.weight.data.normal_(
|
|
|
|
mean=0.0, std=factor * ((self.config.d_model) ** -0.5)
|
|
|
|
)
|
|
|
|
if hasattr(module.wi, "bias") and module.wi.bias is not None:
|
|
|
|
module.wi.bias.data.zero_()
|
|
|
|
module.wo.weight.data.normal_(
|
|
|
|
mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)
|
|
|
|
)
|
|
|
|
if hasattr(module.wo, "bias") and module.wo.bias is not None:
|
|
|
|
module.wo.bias.data.zero_()
|
|
|
|
elif isinstance(module, T5DenseGatedGeluDense):
|
|
|
|
module.wi_0.weight.data.normal_(
|
|
|
|
mean=0.0, std=factor * ((self.config.d_model) ** -0.5)
|
|
|
|
)
|
|
|
|
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None:
|
|
|
|
module.wi_0.bias.data.zero_()
|
|
|
|
module.wi_1.weight.data.normal_(
|
|
|
|
mean=0.0, std=factor * ((self.config.d_model) ** -0.5)
|
|
|
|
)
|
|
|
|
if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None:
|
|
|
|
module.wi_1.bias.data.zero_()
|
|
|
|
module.wo.weight.data.normal_(
|
|
|
|
mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)
|
|
|
|
)
|
|
|
|
if hasattr(module.wo, "bias") and module.wo.bias is not None:
|
|
|
|
module.wo.bias.data.zero_()
|
|
|
|
elif isinstance(module, T5Attention):
|
|
|
|
# Mesh TensorFlow attention initialization to avoid scaling before
|
|
|
|
# softmax See
|
|
|
|
# https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
|
|
|
|
d_model = self.config.d_model
|
|
|
|
key_value_proj_dim = self.config.d_kv
|
|
|
|
n_heads = self.config.num_heads
|
|
|
|
module.q.weight.data.normal_(
|
|
|
|
mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5)
|
|
|
|
)
|
|
|
|
module.k.weight.data.normal_(mean=0.0, std=factor * (d_model ** -0.5))
|
|
|
|
module.v.weight.data.normal_(mean=0.0, std=factor * (d_model ** -0.5))
|
|
|
|
module.o.weight.data.normal_(
|
|
|
|
mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5)
|
|
|
|
)
|
|
|
|
if module.has_relative_attention_bias:
|
|
|
|
module.relative_attention_bias.weight.data.normal_(
|
|
|
|
mean=0.0, std=factor * ((d_model) ** -0.5)
|
|
|
|
)
|
|
|
|
|
|
|
|
def _set_gradient_checkpointing(self, module, value=False):
|
|
|
|
if isinstance(module, (T5Attention, T5Stack)):
|
|
|
|
module.gradient_checkpointing = value
|
|
|
|
|
|
|
|
def _shift_right(self, input_ids):
|
|
|
|
decoder_start_token_id = self.config.decoder_start_token_id
|
|
|
|
pad_token_id = self.config.pad_token_id
|
|
|
|
|
|
|
|
assert (
|
|
|
|
decoder_start_token_id is not None
|
|
|
|
), "self.model.config.decoder_start_token_id has to be defined."
|
|
|
|
|
|
|
|
# shift inputs to the right
|
|
|
|
if is_torch_fx_proxy(input_ids):
|
|
|
|
# Item assignment is not supported natively for proxies.
|
|
|
|
shifted_input_ids = torch.full(
|
|
|
|
input_ids.shape[:-1] + (1,), decoder_start_token_id
|
|
|
|
)
|
|
|
|
shifted_input_ids = torch.cat(
|
|
|
|
[shifted_input_ids, input_ids[..., :-1]], dim=-1
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
|
|
|
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
|
|
|
|
shifted_input_ids[..., 0] = decoder_start_token_id
|
|
|
|
|
|
|
|
assert (
|
|
|
|
pad_token_id is not None
|
|
|
|
), "self.model.config.pad_token_id has to be defined."
|
|
|
|
# replace possible -100 values in labels by `pad_token_id`
|
|
|
|
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
|
|
|
|
|
|
|
assert torch.all(
|
|
|
|
shifted_input_ids >= 0
|
|
|
|
).item(), "Verify that `shifted_input_ids` has only positive values"
|
|
|
|
|
|
|
|
return shifted_input_ids
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def _instantiate(cls, **kwargs):
|
|
|
|
"""Instantiate the model.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
kwargs: Input args.
|
|
|
|
model_dir: The model dir used to load the checkpoint and the
|
|
|
|
label information. num_labels: An optional arg to tell the
|
|
|
|
model how many classes to initialize.
|
|
|
|
Method will call utils.parse_label_mapping
|
|
|
|
if num_labels not supplied. If num_labels is
|
|
|
|
not found, the model will use the default
|
|
|
|
setting (2 classes).
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
The loaded model, which is initialized by
|
|
|
|
transformers.PreTrainedModel.from_pretrained
|
|
|
|
"""
|
|
|
|
|
|
|
|
model_dir = kwargs.get("model_dir", None)
|
|
|
|
if model_dir is None:
|
|
|
|
config = T5Config(**kwargs)
|
|
|
|
model = cls(config)
|
|
|
|
else:
|
|
|
|
model_kwargs = {}
|
|
|
|
model = super(Model, cls).from_pretrained(
|
|
|
|
pretrained_model_name_or_path=model_dir, **model_kwargs
|
|
|
|
)
|
|
|
|
model.model_dir = model_dir
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
class T5Stack(T5PreTrainedModel):
|
|
|
|
def __init__(self, config, embed_tokens=None):
|
|
|
|
super().__init__(config)
|
|
|
|
|
|
|
|
self.embed_tokens = embed_tokens
|
|
|
|
self.is_decoder = config.is_decoder
|
|
|
|
|
|
|
|
self.block = nn.ModuleList(
|
|
|
|
[
|
|
|
|
T5Block(config, has_relative_attention_bias=bool(i == 0))
|
|
|
|
for i in range(config.num_layers)
|
|
|
|
]
|
|
|
|
)
|
|
|
|
self.final_layer_norm = T5LayerNorm(
|
|
|
|
config.d_model, eps=config.layer_norm_epsilon
|
|
|
|
)
|
|
|
|
self.dropout = nn.Dropout(config.dropout_rate)
|
|
|
|
|
|
|
|
# Initialize weights and apply final processing
|
|
|
|
self.post_init()
|
|
|
|
# Model parallel
|
|
|
|
self.model_parallel = False
|
|
|
|
self.device_map = None
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
|
|
|
|
def parallelize(self, device_map=None):
|
|
|
|
r"""
|
|
|
|
This is an experimental feature and is a subject to change at a
|
|
|
|
moment's notice.
|
|
|
|
|
|
|
|
Uses a device map to distribute attention modules of the model
|
|
|
|
across several devices. If no device map is given, it will evenly
|
|
|
|
distribute blocks across all devices.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
device_map (`Dict[int, list]`, optional, defaults to None):
|
|
|
|
A dictionary that maps attention modules to devices. Note
|
|
|
|
that the embedding module and LMHead are always
|
|
|
|
automatically mapped to the first device (for esoteric
|
|
|
|
reasons). That means that the first device should have fewer
|
|
|
|
attention modules mapped to it than other devices. For
|
|
|
|
reference, the t5 models have the following number of
|
|
|
|
attention modules:
|
|
|
|
|
|
|
|
- t5-small: 6
|
|
|
|
- t5-base: 12
|
|
|
|
- t5-large: 24
|
|
|
|
- t5-3b: 24
|
|
|
|
- t5-11b: 24
|
|
|
|
|
|
|
|
Example:
|
|
|
|
|
|
|
|
>>> # Here is an example of a device map on a machine with 4 GPUs
|
|
|
|
>>> # using t5-3b, which has a total of 24 attention modules:
|
|
|
|
>>> model = T5ForConditionalGeneration.from_pretrained("t5-3b")
|
|
|
|
>>> device_map = {
|
|
|
|
>>> 0: [0, 1, 2], 1: [3, 4, 5, 6, 7, 8, 9], 2: [10, 11, 12, 13, 14,
|
|
|
|
>>> 15, 16], 3: [17, 18, 19, 20, 21, 22, 23],
|
|
|
|
>>> }
|
|
|
|
>>> model.parallelize(device_map)
|
|
|
|
>>> # all of the parallelize methods in this file are the same
|
|
|
|
|
|
|
|
"""
|
|
|
|
# Check validity of device_map
|
|
|
|
self.device_map = (
|
|
|
|
get_device_map(len(self.block), range(torch.cuda.device_count()))
|
|
|
|
if device_map is None
|
|
|
|
else device_map
|
|
|
|
)
|
|
|
|
assert_device_map(self.device_map, len(self.block))
|
|
|
|
self.model_parallel = True
|
|
|
|
self.first_device = (
|
|
|
|
"cpu"
|
|
|
|
if "cpu" in self.device_map.keys()
|
|
|
|
else "cuda:" + str(min(self.device_map.keys()))
|
|
|
|
)
|
|
|
|
self.last_device = "cuda:" + str(max(self.device_map.keys()))
|
|
|
|
# Load onto devices
|
|
|
|
for k, v in self.device_map.items():
|
|
|
|
for layer in v:
|
|
|
|
cuda_device = "cuda:" + str(k)
|
|
|
|
self.block[layer] = self.block[layer].to(cuda_device)
|
|
|
|
|
|
|
|
# Set embed_tokens to first layer
|
|
|
|
self.embed_tokens = self.embed_tokens.to(self.first_device)
|
|
|
|
# Set final layer norm to last device
|
|
|
|
self.final_layer_norm = self.final_layer_norm.to(self.last_device)
|
|
|
|
|
|
|
|
def deparallelize(self):
|
|
|
|
r"""
|
|
|
|
Moves the model to cpu from a model parallel state.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
|
|
|
|
>>> # On a 4 GPU machine with t5-3b:
|
|
|
|
>>> model = T5ForConditionalGeneration.from_pretrained("t5-3b")
|
|
|
|
>>> device_map = {
|
|
|
|
>>> 0: [0, 1, 2], 1: [3, 4, 5, 6, 7, 8, 9], 2: [10, 11, 12, 13, 14,
|
|
|
|
>>> 15, 16], 3: [17, 18, 19, 20, 21, 22, 23],
|
|
|
|
>>> }
|
|
|
|
>>> model.parallelize(device_map)
|
|
|
|
>>> # Splits the model across several devices model.deparallelize()
|
|
|
|
>>> # Put the model back on cpu and
|
|
|
|
>>> # cleans memory by calling torch.cuda.empty_cache()
|
|
|
|
>>> # all of the deparallelize methods in this file are the same
|
|
|
|
"""
|
|
|
|
self.model_parallel = False
|
|
|
|
self.device_map = None
|
|
|
|
self.first_device = "cpu"
|
|
|
|
self.last_device = "cpu"
|
|
|
|
for i in range(len(self.block)):
|
|
|
|
self.block[i] = self.block[i].to("cpu")
|
|
|
|
self.embed_tokens = self.embed_tokens.to("cpu")
|
|
|
|
self.final_layer_norm = self.final_layer_norm.to("cpu")
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
def get_input_embeddings(self):
|
|
|
|
return self.embed_tokens
|
|
|
|
|
|
|
|
def set_input_embeddings(self, new_embeddings):
|
|
|
|
self.embed_tokens = new_embeddings
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
input_ids=None,
|
|
|
|
attention_mask=None,
|
|
|
|
encoder_hidden_states=None,
|
|
|
|
encoder_attention_mask=None,
|
|
|
|
inputs_embeds=None,
|
|
|
|
head_mask=None,
|
|
|
|
cross_attn_head_mask=None,
|
|
|
|
past_key_values=None,
|
|
|
|
use_cache=None,
|
|
|
|
output_attentions=None,
|
|
|
|
output_hidden_states=None,
|
|
|
|
return_dict=None,
|
|
|
|
):
|
|
|
|
# Model parallel
|
|
|
|
if self.model_parallel:
|
|
|
|
torch.cuda.set_device(self.first_device)
|
|
|
|
self.embed_tokens = self.embed_tokens.to(self.first_device)
|
|
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
output_attentions = (
|
|
|
|
output_attentions
|
|
|
|
if output_attentions is not None
|
|
|
|
else self.config.output_attentions
|
|
|
|
)
|
|
|
|
output_hidden_states = (
|
|
|
|
output_hidden_states
|
|
|
|
if output_hidden_states is not None
|
|
|
|
else self.config.output_hidden_states
|
|
|
|
)
|
|
|
|
return_dict = (
|
|
|
|
return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
)
|
|
|
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
|
|
err_msg_prefix = "decoder_" if self.is_decoder else ""
|
|
|
|
raise ValueError(
|
|
|
|
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
|
|
|
|
)
|
|
|
|
elif input_ids is not None:
|
|
|
|
input_shape = input_ids.size()
|
|
|
|
input_ids = input_ids.view(-1, input_shape[-1])
|
|
|
|
elif inputs_embeds is not None:
|
|
|
|
input_shape = inputs_embeds.size()[:-1]
|
|
|
|
else:
|
|
|
|
err_msg_prefix = "decoder_" if self.is_decoder else ""
|
|
|
|
raise ValueError(
|
|
|
|
f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds"
|
|
|
|
)
|
|
|
|
|
|
|
|
if inputs_embeds is None:
|
|
|
|
assert (
|
|
|
|
self.embed_tokens is not None
|
|
|
|
), "You have to initialize the model with valid token embeddings"
|
|
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
|
|
|
|
|
|
batch_size, seq_length = input_shape
|
|
|
|
|
|
|
|
# required mask seq length can be calculated via length of past
|
|
|
|
mask_seq_length = (
|
|
|
|
past_key_values[0][0].shape[2] + seq_length
|
|
|
|
if past_key_values is not None
|
|
|
|
else seq_length
|
|
|
|
)
|
|
|
|
|
|
|
|
if use_cache is True:
|
|
|
|
assert (
|
|
|
|
self.is_decoder
|
|
|
|
), f"`use_cache` can only be set to `True` if {self} is used as a decoder"
|
|
|
|
|
|
|
|
if attention_mask is None:
|
|
|
|
attention_mask = torch.ones(batch_size, mask_seq_length).to(
|
|
|
|
inputs_embeds.device
|
|
|
|
)
|
|
|
|
if (
|
|
|
|
self.is_decoder
|
|
|
|
and encoder_attention_mask is None
|
|
|
|
and encoder_hidden_states is not None
|
|
|
|
):
|
|
|
|
encoder_seq_length = encoder_hidden_states.shape[1]
|
|
|
|
encoder_attention_mask = torch.ones(
|
|
|
|
batch_size,
|
|
|
|
encoder_seq_length,
|
|
|
|
device=inputs_embeds.device,
|
|
|
|
dtype=torch.long,
|
|
|
|
)
|
|
|
|
|
|
|
|
# initialize past_key_values with `None` if past does not exist
|
|
|
|
if past_key_values is None:
|
|
|
|
past_key_values = [None] * len(self.block)
|
|
|
|
|
|
|
|
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
|
|
|
# ourselves in which case we just need to make it broadcastable to all heads.
|
|
|
|
extended_attention_mask = self.get_extended_attention_mask(
|
|
|
|
attention_mask, input_shape, inputs_embeds.device
|
|
|
|
)
|
|
|
|
|
|
|
|
# If a 2D or 3D attention mask is provided for the cross-attention
|
|
|
|
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
|
|
|
if self.is_decoder and encoder_hidden_states is not None:
|
|
|
|
(
|
|
|
|
encoder_batch_size,
|
|
|
|
encoder_sequence_length,
|
|
|
|
_,
|
|
|
|
) = encoder_hidden_states.size()
|
|
|
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
|
|
|
if encoder_attention_mask is None:
|
|
|
|
encoder_attention_mask = torch.ones(
|
|
|
|
encoder_hidden_shape, device=inputs_embeds.device
|
|
|
|
)
|
|
|
|
encoder_extended_attention_mask = self.invert_attention_mask(
|
|
|
|
encoder_attention_mask
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
encoder_extended_attention_mask = None
|
|
|
|
|
|
|
|
# Prepare head mask if needed
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
|
|
|
|
cross_attn_head_mask = self.get_head_mask(
|
|
|
|
cross_attn_head_mask, self.config.num_layers
|
|
|
|
)
|
|
|
|
present_key_value_states = () if use_cache else None
|
|
|
|
all_hidden_states = () if output_hidden_states else None
|
|
|
|
all_attentions = () if output_attentions else None
|
|
|
|
all_cross_attentions = () if (output_attentions and self.is_decoder) else None
|
|
|
|
position_bias = None
|
|
|
|
encoder_decoder_position_bias = None
|
|
|
|
|
|
|
|
hidden_states = self.dropout(inputs_embeds)
|
|
|
|
|
|
|
|
for i, (layer_module, past_key_value) in enumerate(
|
|
|
|
zip(self.block, past_key_values)
|
|
|
|
):
|
|
|
|
layer_head_mask = head_mask[i]
|
|
|
|
cross_attn_layer_head_mask = cross_attn_head_mask[i]
|
|
|
|
# Model parallel
|
|
|
|
if self.model_parallel:
|
|
|
|
torch.cuda.set_device(hidden_states.device)
|
|
|
|
# Ensure that attention_mask is always on the same device as hidden_states
|
|
|
|
if attention_mask is not None:
|
|
|
|
attention_mask = attention_mask.to(hidden_states.device)
|
|
|
|
if position_bias is not None:
|
|
|
|
position_bias = position_bias.to(hidden_states.device)
|
|
|
|
if encoder_hidden_states is not None:
|
|
|
|
encoder_hidden_states = encoder_hidden_states.to(
|
|
|
|
hidden_states.device
|
|
|
|
)
|
|
|
|
if encoder_extended_attention_mask is not None:
|
|
|
|
encoder_extended_attention_mask = (
|
|
|
|
encoder_extended_attention_mask.to(hidden_states.device)
|
|
|
|
)
|
|
|
|
if encoder_decoder_position_bias is not None:
|
|
|
|
encoder_decoder_position_bias = encoder_decoder_position_bias.to(
|
|
|
|
hidden_states.device
|
|
|
|
)
|
|
|
|
if layer_head_mask is not None:
|
|
|
|
layer_head_mask = layer_head_mask.to(hidden_states.device)
|
|
|
|
if cross_attn_layer_head_mask is not None:
|
|
|
|
cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(
|
|
|
|
hidden_states.device
|
|
|
|
)
|
|
|
|
if output_hidden_states:
|
|
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
|
|
if use_cache:
|
|
|
|
logger.warning(
|
|
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
|
|
|
)
|
|
|
|
use_cache = False
|
|
|
|
|
|
|
|
def create_custom_forward(module):
|
|
|
|
def custom_forward(*inputs):
|
|
|
|
return tuple(module(*inputs, use_cache, output_attentions))
|
|
|
|
|
|
|
|
return custom_forward
|
|
|
|
|
|
|
|
layer_outputs = checkpoint(
|
|
|
|
create_custom_forward(layer_module),
|
|
|
|
hidden_states,
|
|
|
|
extended_attention_mask,
|
|
|
|
position_bias,
|
|
|
|
encoder_hidden_states,
|
|
|
|
encoder_extended_attention_mask,
|
|
|
|
encoder_decoder_position_bias,
|
|
|
|
layer_head_mask,
|
|
|
|
cross_attn_layer_head_mask,
|
|
|
|
None, # past_key_value is always None with gradient checkpointing
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
layer_outputs = layer_module(
|
|
|
|
hidden_states,
|
|
|
|
attention_mask=extended_attention_mask,
|
|
|
|
position_bias=position_bias,
|
|
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
|
|
encoder_attention_mask=encoder_extended_attention_mask,
|
|
|
|
encoder_decoder_position_bias=encoder_decoder_position_bias,
|
|
|
|
layer_head_mask=layer_head_mask,
|
|
|
|
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
|
|
|
|
past_key_value=past_key_value,
|
|
|
|
use_cache=use_cache,
|
|
|
|
output_attentions=output_attentions,
|
|
|
|
)
|
|
|
|
|
|
|
|
# layer_outputs is a tuple with: hidden-states, key-value-states,
|
|
|
|
# (self-attention position bias), (self-attention weights),
|
|
|
|
# (cross-attention position bias), (cross-attention weights)
|
|
|
|
if use_cache is False:
|
|
|
|
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
|
|
|
|
|
|
|
|
hidden_states, present_key_value_state = layer_outputs[:2]
|
|
|
|
|
|
|
|
# We share the position biases between the layers - the first layer
|
|
|
|
# store them layer_outputs = hidden-states, key-value-states
|
|
|
|
# (self-attention position bias), (self-attention weights),
|
|
|
|
# (cross-attention position bias), (cross-attention weights)
|
|
|
|
position_bias = layer_outputs[2]
|
|
|
|
if self.is_decoder and encoder_hidden_states is not None:
|
|
|
|
encoder_decoder_position_bias = layer_outputs[
|
|
|
|
4 if output_attentions else 3
|
|
|
|
]
|
|
|
|
# append next layer key value states
|
|
|
|
if use_cache:
|
|
|
|
present_key_value_states = present_key_value_states + (
|
|
|
|
present_key_value_state,
|
|
|
|
)
|
|
|
|
|
|
|
|
if output_attentions:
|
|
|
|
all_attentions = all_attentions + (layer_outputs[3],)
|
|
|
|
if self.is_decoder:
|
|
|
|
all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
|
|
|
|
|
|
|
|
# Model Parallel: If it's the last layer for that device, put things on the next device
|
|
|
|
if self.model_parallel:
|
|
|
|
for k, v in self.device_map.items():
|
|
|
|
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
|
|
|
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
|
|
|
|
|
|
|
hidden_states = self.final_layer_norm(hidden_states)
|
|
|
|
hidden_states = self.dropout(hidden_states)
|
|
|
|
|
|
|
|
# Add last layer
|
|
|
|
if output_hidden_states:
|
|
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
|
|
|
|
if not return_dict:
|
|
|
|
return tuple(
|
|
|
|
v
|
|
|
|
for v in [
|
|
|
|
hidden_states,
|
|
|
|
present_key_value_states,
|
|
|
|
all_hidden_states,
|
|
|
|
all_attentions,
|
|
|
|
all_cross_attentions,
|
|
|
|
]
|
|
|
|
if v is not None
|
|
|
|
)
|
|
|
|
return BaseModelOutputWithPastAndCrossAttentions(
|
|
|
|
last_hidden_state=hidden_states,
|
|
|
|
past_key_values=present_key_value_states,
|
|
|
|
hidden_states=all_hidden_states,
|
|
|
|
attentions=all_attentions,
|
|
|
|
cross_attentions=all_cross_attentions,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# Warning message for FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
|
|
|
|
__HEAD_MASK_WARNING_MSG = """
|
|
|
|
The input argument `head_mask` was split into two arguments `head_mask` and
|
|
|
|
`decoder_head_mask`. Currently, `decoder_head_mask` is set to copy `head_mask`,
|
|
|
|
but this feature is deprecated and will be removed in future versions. If you do
|
|
|
|
not want to use any `decoder_head_mask` now, please set `decoder_head_mask =
|
|
|
|
torch.ones(num_layers, num_heads)`.
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
class T5Model(T5PreTrainedModel):
|
|
|
|
"""The bare T5 Model transformer outputting raw hidden-states without any
|
|
|
|
specific head on top.
|
|
|
|
|
|
|
|
The T5 model was proposed in [Exploring the Limits of Transfer Learning with
|
|
|
|
a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by
|
|
|
|
Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
|
|
|
|
Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It's an encoder decoder
|
|
|
|
transformer pre-trained in a text-to-text denoising generative setting.
|
|
|
|
|
|
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass
|
|
|
|
documentation for the generic methods the library implements for all its
|
|
|
|
model (such as downloading or saving, resizing the input embeddings, pruning
|
|
|
|
heads etc.)
|
|
|
|
|
|
|
|
This model is also a PyTorch
|
|
|
|
[torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module)
|
|
|
|
subclass. Use it as a regular PyTorch Module and refer to the PyTorch
|
|
|
|
documentation for all matter related to general usage and behavior.
|
|
|
|
|
|
|
|
Parameters:
|
|
|
|
config ([`T5Config`]): Model configuration class with all the parameters
|
|
|
|
of the model.
|
|
|
|
Initializing with a config file does not load the weights associated
|
|
|
|
with the model, only the configuration. Check out the
|
|
|
|
[`~PreTrainedModel.from_pretrained`] method to load the model
|
|
|
|
weights.
|
|
|
|
"""
|
|
|
|
|
|
|
|
_keys_to_ignore_on_load_missing = [
|
|
|
|
r"encoder\.embed_tokens\.weight",
|
|
|
|
r"decoder\.embed_tokens\.weight",
|
|
|
|
]
|
|
|
|
_keys_to_ignore_on_load_unexpected = [
|
|
|
|
r"decoder\.block\.0\.layer\.1\.EncDecAttention\.relative_attention_bias\.weight",
|
|
|
|
]
|
|
|
|
|
|
|
|
def __init__(self, config: T5Config):
|
|
|
|
super().__init__(config)
|
|
|
|
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
|
|
|
|
|
|
|
encoder_config = copy.deepcopy(config)
|
|
|
|
encoder_config.is_decoder = False
|
|
|
|
encoder_config.use_cache = False
|
|
|
|
encoder_config.is_encoder_decoder = False
|
|
|
|
self.encoder = T5Stack(encoder_config, self.shared)
|
|
|
|
|
|
|
|
decoder_config = copy.deepcopy(config)
|
|
|
|
decoder_config.is_decoder = True
|
|
|
|
decoder_config.is_encoder_decoder = False
|
|
|
|
decoder_config.num_layers = config.num_decoder_layers
|
|
|
|
self.decoder = T5Stack(decoder_config, self.shared)
|
|
|
|
|
|
|
|
# Initialize weights and apply final processing
|
|
|
|
self.post_init()
|
|
|
|
|
|
|
|
# Model parallel
|
|
|
|
self.model_parallel = False
|
|
|
|
self.device_map = None
|
|
|
|
|
|
|
|
def parallelize(self, device_map=None):
|
|
|
|
self.device_map = (
|
|
|
|
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
|
|
|
|
if device_map is None
|
|
|
|
else device_map
|
|
|
|
)
|
|
|
|
assert_device_map(self.device_map, len(self.encoder.block))
|
|
|
|
self.encoder.parallelize(self.device_map)
|
|
|
|
self.decoder.parallelize(self.device_map)
|
|
|
|
self.model_parallel = True
|
|
|
|
|
|
|
|
def deparallelize(self):
|
|
|
|
self.encoder.deparallelize()
|
|
|
|
self.decoder.deparallelize()
|
|
|
|
self.encoder = self.encoder.to("cpu")
|
|
|
|
self.decoder = self.decoder.to("cpu")
|
|
|
|
self.model_parallel = False
|
|
|
|
self.device_map = None
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
def get_input_embeddings(self):
|
|
|
|
return self.shared
|
|
|
|
|
|
|
|
def set_input_embeddings(self, new_embeddings):
|
|
|
|
self.shared = new_embeddings
|
|
|
|
self.encoder.set_input_embeddings(new_embeddings)
|
|
|
|
self.decoder.set_input_embeddings(new_embeddings)
|
|
|
|
|
|
|
|
def get_encoder(self):
|
|
|
|
return self.encoder
|
|
|
|
|
|
|
|
def get_decoder(self):
|
|
|
|
return self.decoder
|
|
|
|
|
|
|
|
def _prune_heads(self, heads_to_prune):
|
|
|
|
"""
|
|
|
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of
|
|
|
|
heads to prune in this layer} See base class PreTrainedModel
|
|
|
|
"""
|
|
|
|
for layer, heads in heads_to_prune.items():
|
|
|
|
self.encoder.layer[layer].attention.prune_heads(heads)
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
decoder_input_ids: Optional[torch.LongTensor] = None,
|
|
|
|
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
|
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
decoder_head_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
|
|
|
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
|
|
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
|
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
|
|
decoder_inputs_embeds: Optional[torch.Tensor] = None,
|
|
|
|
use_cache: Optional[bool] = None,
|
|
|
|
output_attentions: Optional[bool] = None,
|
|
|
|
output_hidden_states: Optional[bool] = None,
|
|
|
|
return_dict: Optional[bool] = None,
|
|
|
|
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
|
|
|
|
r"""
|
|
|
|
Args:
|
|
|
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
|
|
|
Indices of input sequence tokens in the vocabulary. T5 is a model
|
|
|
|
with relative position embeddings so you should be able to pad the
|
|
|
|
inputs on both the right and the left.
|
|
|
|
|
|
|
|
Indices can be obtained using [`T5Tokenizer`]. See
|
|
|
|
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`]
|
|
|
|
for detail.
|
|
|
|
|
|
|
|
[What are input IDs?](../glossary#input-ids)
|
|
|
|
|
|
|
|
To know more on how to prepare `input_ids` for pretraining take a
|
|
|
|
look a [T5 Training](./t5#training).
|
|
|
|
attention_mask (`torch.FloatTensor` of shape `(batch_size,
|
|
|
|
sequence_length)`, *optional*):
|
|
|
|
Mask to avoid performing attention on padding token indices. Mask
|
|
|
|
values selected in `[0, 1]`:
|
|
|
|
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
|
|
- 0 for tokens that are **masked**.
|
|
|
|
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
|
|
decoder_input_ids (`torch.LongTensor` of shape `(batch_size,
|
|
|
|
target_sequence_length)`, *optional*):
|
|
|
|
Indices of decoder input sequence tokens in the vocabulary.
|
|
|
|
|
|
|
|
Indices can be obtained using [`T5Tokenizer`]. See
|
|
|
|
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`]
|
|
|
|
for details.
|
|
|
|
|
|
|
|
[What are decoder input IDs?](../glossary#decoder-input-ids)
|
|
|
|
|
|
|
|
T5 uses the `pad_token_id` as the starting token for
|
|
|
|
`decoder_input_ids` generation. If `past_key_values` is used,
|
|
|
|
optionally only the last `decoder_input_ids` have to be input (see
|
|
|
|
`past_key_values`).
|
|
|
|
|
|
|
|
To know more on how to prepare `decoder_input_ids` for pretraining
|
|
|
|
take a look at [T5 Training](./t5#training).
|
|
|
|
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size,
|
|
|
|
target_sequence_length)`, *optional*):
|
|
|
|
Default behavior: generate a tensor that ignores pad tokens in
|
|
|
|
`decoder_input_ids`. Causal mask will also be used by default.
|
|
|
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers,
|
|
|
|
num_heads)`, *optional*):
|
|
|
|
Mask to nullify selected heads of the self-attention modules in the
|
|
|
|
encoder. Mask values selected in `[0, 1]`:
|
|
|
|
|
|
|
|
- 1 indicates the head is **not masked**,
|
|
|
|
- 0 indicates the head is **masked**.
|
|
|
|
|
|
|
|
decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or
|
|
|
|
`(num_layers, num_heads)`, *optional*):
|
|
|
|
Mask to nullify selected heads of the self-attention modules in the
|
|
|
|
decoder. Mask values selected in `[0, 1]`:
|
|
|
|
|
|
|
|
- 1 indicates the head is **not masked**,
|
|
|
|
- 0 indicates the head is **masked**.
|
|
|
|
|
|
|
|
cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or
|
|
|
|
`(num_layers, num_heads)`, *optional*):
|
|
|
|
Mask to nullify selected heads of the cross-attention modules in
|
|
|
|
the decoder. Mask values selected in `[0, 1]`:
|
|
|
|
|
|
|
|
- 1 indicates the head is **not masked**,
|
|
|
|
- 0 indicates the head is **masked**.
|
|
|
|
|
|
|
|
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
|
|
|
|
Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*,
|
|
|
|
`optional`: *attentions*) `last_hidden_state` of shape `(batch_size,
|
|
|
|
sequence_length, hidden_size)` is a sequence of hidden states at the
|
|
|
|
output of the last layer of the encoder. Used in the cross-attention
|
|
|
|
of the decoder.
|
|
|
|
past_key_values (`tuple(tuple(torch.FloatTensor))` of length
|
|
|
|
`config.n_layers` with each tuple having 4 tensors of shape
|
|
|
|
`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
|
|
|
Contains precomputed key and value hidden states of the attention
|
|
|
|
blocks. Can be used to speed up decoding.
|
|
|
|
|
|
|
|
If `past_key_values` are used, the user can optionally input only
|
|
|
|
the last `decoder_input_ids` (those that don't have their past key
|
|
|
|
value states given to this model) of shape `(batch_size, 1)` instead
|
|
|
|
of all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
|
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size,
|
|
|
|
sequence_length, hidden_size)`, *optional*):
|
|
|
|
Optionally, instead of passing `input_ids` you can choose to
|
|
|
|
directly pass an embedded representation. This is useful if you want
|
|
|
|
more control over how to convert `input_ids` indices into associated
|
|
|
|
vectors than the model's internal embedding lookup matrix.
|
|
|
|
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size,
|
|
|
|
target_sequence_length, hidden_size)`, *optional*):
|
|
|
|
Optionally, instead of passing `decoder_input_ids` you can choose to
|
|
|
|
directly pass an embedded representation. If `past_key_values` is
|
|
|
|
used, optionally only the last `decoder_inputs_embeds` have to be
|
|
|
|
input (see `past_key_values`). This is useful if you want more
|
|
|
|
control over how to convert `decoder_input_ids` indices into
|
|
|
|
associated vectors than the model's internal embedding lookup
|
|
|
|
matrix.
|
|
|
|
|
|
|
|
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset,
|
|
|
|
`decoder_inputs_embeds` takes the value of `inputs_embeds`.
|
|
|
|
|
|
|
|
use_cache (`bool`, *optional*):
|
|
|
|
If set to `True`, `past_key_values` key value states are returned
|
|
|
|
and can be used to speed up decoding (see `past_key_values`).
|
|
|
|
|
|
|
|
output_attentions (`bool`, *optional*):
|
|
|
|
Whether or not to return the attentions tensors of all attention
|
|
|
|
layers. See `attentions` under returned tensors for more detail.
|
|
|
|
output_hidden_states (`bool`, *optional*):
|
|
|
|
Whether or not to return the hidden states of all layers. See
|
|
|
|
`hidden_states` under returned tensors for more detail.
|
|
|
|
return_dict (`bool`, *optional*):
|
|
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain
|
|
|
|
tuple.
|
|
|
|
Returns:
|
|
|
|
|
|
|
|
Example:
|
|
|
|
|
|
|
|
>>> from transformers import T5Tokenizer, T5Model
|
|
|
|
|
|
|
|
>>> tokenizer = T5Tokenizer.from_pretrained("t5-small")
|
|
|
|
>>> model = T5Model.from_pretrained("t5-small")
|
|
|
|
|
|
|
|
>>> input_ids = tokenizer(
|
|
|
|
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
|
|
|
|
>>> ).input_ids # Batch size 1
|
|
|
|
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
|
|
|
|
|
|
|
|
>>> # forward pass
|
|
|
|
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
|
|
|
|
>>> last_hidden_states = outputs.last_hidden_state
|
|
|
|
"""
|
|
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
return_dict = (
|
|
|
|
return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
)
|
|
|
|
|
|
|
|
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
|
|
|
|
if head_mask is not None and decoder_head_mask is None:
|
|
|
|
if self.config.num_layers == self.config.num_decoder_layers:
|
|
|
|
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
|
|
|
|
decoder_head_mask = head_mask
|
|
|
|
|
|
|
|
# Encode if needed (training, first prediction pass)
|
|
|
|
if encoder_outputs is None:
|
|
|
|
encoder_outputs = self.encoder(
|
|
|
|
input_ids=input_ids,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
inputs_embeds=inputs_embeds,
|
|
|
|
head_mask=head_mask,
|
|
|
|
output_attentions=output_attentions,
|
|
|
|
output_hidden_states=output_hidden_states,
|
|
|
|
return_dict=return_dict,
|
|
|
|
)
|
|
|
|
elif return_dict and not isinstance(
|
|
|
|
encoder_outputs, AttentionBackboneModelOutput
|
|
|
|
):
|
|
|
|
encoder_outputs = AttentionBackboneModelOutput(
|
|
|
|
last_hidden_state=encoder_outputs[0],
|
|
|
|
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
|
|
|
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
|
|
|
)
|
|
|
|
|
|
|
|
hidden_states = encoder_outputs[0]
|
|
|
|
if self.model_parallel:
|
|
|
|
torch.cuda.set_device(self.decoder.first_device)
|
|
|
|
# Set device for model parallelism
|
|
|
|
if self.model_parallel:
|
|
|
|
torch.cuda.set_device(self.decoder.first_device)
|
|
|
|
hidden_states = hidden_states.to(self.decoder.first_device)
|
|
|
|
if decoder_input_ids is not None:
|
|
|
|
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device)
|
|
|
|
if attention_mask is not None:
|
|
|
|
attention_mask = attention_mask.to(self.decoder.first_device)
|
|
|
|
if decoder_attention_mask is not None:
|
|
|
|
decoder_attention_mask = decoder_attention_mask.to(
|
|
|
|
self.decoder.first_device
|
|
|
|
)
|
|
|
|
|
|
|
|
# Decode
|
|
|
|
decoder_outputs = self.decoder(
|
|
|
|
input_ids=decoder_input_ids,
|
|
|
|
attention_mask=decoder_attention_mask,
|
|
|
|
inputs_embeds=decoder_inputs_embeds,
|
|
|
|
past_key_values=past_key_values,
|
|
|
|
encoder_hidden_states=hidden_states,
|
|
|
|
encoder_attention_mask=attention_mask,
|
|
|
|
head_mask=decoder_head_mask,
|
|
|
|
cross_attn_head_mask=cross_attn_head_mask,
|
|
|
|
use_cache=use_cache,
|
|
|
|
output_attentions=output_attentions,
|
|
|
|
output_hidden_states=output_hidden_states,
|
|
|
|
return_dict=return_dict,
|
|
|
|
)
|
|
|
|
|
|
|
|
if not return_dict:
|
|
|
|
return decoder_outputs + encoder_outputs
|
|
|
|
|
|
|
|
return Seq2SeqModelOutput(
|
|
|
|
last_hidden_state=decoder_outputs.last_hidden_state,
|
|
|
|
past_key_values=decoder_outputs.past_key_values,
|
|
|
|
decoder_hidden_states=decoder_outputs.hidden_states,
|
|
|
|
decoder_attentions=decoder_outputs.attentions,
|
|
|
|
cross_attentions=decoder_outputs.cross_attentions,
|
|
|
|
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
|
|
|
encoder_hidden_states=encoder_outputs.hidden_states,
|
|
|
|
encoder_attentions=encoder_outputs.attentions,
|
|
|
|
)
|