176 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			Python
		
	
	
	
		
		
			
		
	
	
			176 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			Python
		
	
	
	
|  | # Copyright (c) Alibaba, Inc. and its affiliates. | ||
|  | # Copyright 2020, The T5 Authors and HuggingFace Inc. | ||
|  | # | ||
|  | # Licensed under the Apache License, Version 2.0 (the "License"); | ||
|  | # you may not use this file except in compliance with the License. | ||
|  | # You may obtain a copy of the License at | ||
|  | # | ||
|  | #     http://www.apache.org/licenses/LICENSE-2.0 | ||
|  | # | ||
|  | # Unless required by applicable law or agreed to in writing, software | ||
|  | # distributed under the License is distributed on an "AS IS" BASIS, | ||
|  | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
|  | # See the License for the specific language governing permissions and | ||
|  | # limitations under the License. | ||
|  | """ T5 model configuration""" | ||
|  | from typing import Mapping | ||
|  | 
 | ||
|  | from transformers.configuration_utils import PretrainedConfig | ||
|  | from transformers.onnx import OnnxSeq2SeqConfigWithPast | ||
|  | 
 | ||
|  | from modelscope.utils.logger import get_logger | ||
|  | 
 | ||
|  | logger = get_logger() | ||
|  | 
 | ||
|  | 
 | ||
|  | class T5Config(PretrainedConfig): | ||
|  |     r"""
 | ||
|  |     This is the configuration class to store the configuration of a [`T5Model`] or a [`TFT5Model`]. It is used to | ||
|  |     instantiate a T5 model according to the specified arguments, defining the model architecture. Instantiating a | ||
|  |     configuration with the defaults will yield a similar configuration to that of the T5 | ||
|  |     [t5-small](https://huggingface.co/t5-small) architecture. | ||
|  | 
 | ||
|  |     Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | ||
|  |     documentation from [`PretrainedConfig`] for more information. | ||
|  | 
 | ||
|  |     Arguments: | ||
|  |         vocab_size (`int`, *optional*, defaults to 32128): | ||
|  |             Vocabulary size of the T5 model. Defines the number of different tokens that can be represented by the | ||
|  |             `inputs_ids` passed when calling [`T5Model`] or [`TFT5Model`]. | ||
|  |         d_model (`int`, *optional*, defaults to 512): | ||
|  |             Size of the encoder layers and the pooler layer. | ||
|  |         d_kv (`int`, *optional*, defaults to 64): | ||
|  |             Size of the key, query, value projections per attention head. `d_kv` has to be equal to `d_model // | ||
|  |             num_heads`. | ||
|  |         d_ff (`int`, *optional*, defaults to 2048): | ||
|  |             Size of the intermediate feed forward layer in each `T5Block`. | ||
|  |         num_layers (`int`, *optional*, defaults to 6): | ||
|  |             Number of hidden layers in the Transformer encoder. | ||
|  |         num_decoder_layers (`int`, *optional*): | ||
|  |             Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set. | ||
|  |         num_heads (`int`, *optional*, defaults to 8): | ||
|  |             Number of attention heads for each attention layer in the Transformer encoder. | ||
|  |         relative_attention_num_buckets (`int`, *optional*, defaults to 32): | ||
|  |             The number of buckets to use for each attention layer. | ||
|  |         relative_attention_max_distance (`int`, *optional*, defaults to 128): | ||
|  |             The maximum distance of the longer sequences for the bucket separation. | ||
|  |         dropout_rate (`float`, *optional*, defaults to 0.1): | ||
|  |             The ratio for all dropout layers. | ||
|  |         layer_norm_eps (`float`, *optional*, defaults to 1e-6): | ||
|  |             The epsilon used by the layer normalization layers. | ||
|  |         initializer_factor (`float`, *optional*, defaults to 1): | ||
|  |             A factor for initializing all weight matrices (should be kept to 1, used internally for initialization | ||
|  |             testing). | ||
|  |         feed_forward_proj (`string`, *optional*, defaults to `"relu"`): | ||
|  |             Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`. T5v1.1 uses the | ||
|  |             `"gated-gelu"` feed forward projection. Original T5 uses `"relu"`. | ||
|  |         use_cache (`bool`, *optional*, defaults to `True`): | ||
|  |             Whether or not the model should return the last key/values attentions (not used by all models). | ||
|  |     """
 | ||
|  |     model_type = 't5' | ||
|  |     keys_to_ignore_at_inference = ['past_key_values'] | ||
|  |     attribute_map = { | ||
|  |         'hidden_size': 'd_model', | ||
|  |         'num_attention_heads': 'num_heads', | ||
|  |         'num_hidden_layers': 'num_layers' | ||
|  |     } | ||
|  | 
 | ||
|  |     def __init__(self, | ||
|  |                  vocab_size=32128, | ||
|  |                  d_model=512, | ||
|  |                  d_kv=64, | ||
|  |                  d_ff=2048, | ||
|  |                  num_layers=6, | ||
|  |                  num_decoder_layers=None, | ||
|  |                  num_heads=8, | ||
|  |                  relative_attention_num_buckets=32, | ||
|  |                  relative_attention_max_distance=128, | ||
|  |                  dropout_rate=0.1, | ||
|  |                  layer_norm_epsilon=1e-6, | ||
|  |                  initializer_factor=1.0, | ||
|  |                  feed_forward_proj='relu', | ||
|  |                  is_encoder_decoder=True, | ||
|  |                  use_cache=True, | ||
|  |                  pad_token_id=0, | ||
|  |                  eos_token_id=1, | ||
|  |                  **kwargs): | ||
|  |         self.vocab_size = vocab_size | ||
|  |         self.d_model = d_model | ||
|  |         self.d_kv = d_kv | ||
|  |         self.d_ff = d_ff | ||
|  |         self.num_layers = num_layers | ||
|  |         self.num_decoder_layers = (num_decoder_layers if num_decoder_layers | ||
|  |                                    is not None else self.num_layers | ||
|  |                                    )  # default = symmetry | ||
|  |         self.num_heads = num_heads | ||
|  |         self.relative_attention_num_buckets = relative_attention_num_buckets | ||
|  |         self.relative_attention_max_distance = relative_attention_max_distance | ||
|  |         self.dropout_rate = dropout_rate | ||
|  |         self.layer_norm_epsilon = layer_norm_epsilon | ||
|  |         self.initializer_factor = initializer_factor | ||
|  |         self.feed_forward_proj = feed_forward_proj | ||
|  |         self.use_cache = use_cache | ||
|  | 
 | ||
|  |         act_info = self.feed_forward_proj.split('-') | ||
|  |         self.dense_act_fn = act_info[-1] | ||
|  |         self.is_gated_act = act_info[0] == 'gated' | ||
|  | 
 | ||
|  |         if len(act_info) > 1 and act_info[0] != 'gated' or len(act_info) > 2: | ||
|  |             raise ValueError( | ||
|  |                 f'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' | ||
|  |                 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' | ||
|  |                 "'gated-gelu' or 'relu'") | ||
|  | 
 | ||
|  |         # for backwards compatibility | ||
|  |         if feed_forward_proj == 'gated-gelu': | ||
|  |             self.dense_act_fn = 'gelu_new' | ||
|  | 
 | ||
|  |         super().__init__( | ||
|  |             pad_token_id=pad_token_id, | ||
|  |             eos_token_id=eos_token_id, | ||
|  |             is_encoder_decoder=is_encoder_decoder, | ||
|  |             **kwargs, | ||
|  |         ) | ||
|  | 
 | ||
|  | 
 | ||
|  | class T5OnnxConfig(OnnxSeq2SeqConfigWithPast): | ||
|  | 
 | ||
|  |     @property | ||
|  |     def inputs(self) -> Mapping[str, Mapping[int, str]]: | ||
|  |         common_inputs = { | ||
|  |             'input_ids': { | ||
|  |                 0: 'batch', | ||
|  |                 1: 'encoder_sequence' | ||
|  |             }, | ||
|  |             'attention_mask': { | ||
|  |                 0: 'batch', | ||
|  |                 1: 'encoder_sequence' | ||
|  |             }, | ||
|  |         } | ||
|  |         if self.use_past: | ||
|  |             common_inputs['attention_mask'][ | ||
|  |                 1] = 'past_encoder_sequence + sequence' | ||
|  |             common_inputs['decoder_input_ids'] = {0: 'batch'} | ||
|  |             common_inputs['decoder_attention_mask'] = { | ||
|  |                 0: 'batch', | ||
|  |                 1: 'past_decoder_sequence + sequence' | ||
|  |             } | ||
|  |         else: | ||
|  |             common_inputs['decoder_input_ids'] = { | ||
|  |                 0: 'batch', | ||
|  |                 1: 'decoder_sequence' | ||
|  |             } | ||
|  |             common_inputs['decoder_attention_mask'] = { | ||
|  |                 0: 'batch', | ||
|  |                 1: 'decoder_sequence' | ||
|  |             } | ||
|  | 
 | ||
|  |         if self.use_past: | ||
|  |             self.fill_with_past_key_values_(common_inputs, direction='inputs') | ||
|  | 
 | ||
|  |         return common_inputs | ||
|  | 
 | ||
|  |     @property | ||
|  |     def default_onnx_opset(self) -> int: | ||
|  |         return 13 |