Witllm/qwen/modeling_qwen.py

686 lines
26 KiB
Python
Raw Normal View History

2024-01-03 20:26:26 +08:00
# Copyright (c) Alibaba Cloud.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import copy
import math
import inspect
2024-01-03 20:26:26 +08:00
from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List, Any, Generator
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.nn import CrossEntropyLoss
from transformers import PreTrainedTokenizer, GenerationConfig, StoppingCriteriaList
from transformers.generation.logits_process import LogitsProcessorList
if TYPE_CHECKING:
from transformers.generation.streamers import BaseStreamer
from transformers.generation.utils import GenerateOutput
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from torch import nn
2024-01-07 22:49:21 +08:00
from einops import rearrange
2024-01-03 20:26:26 +08:00
2024-01-03 21:03:27 +08:00
from configuration_qwen import QWenConfig
from qwen_generation_utils import (
2024-01-03 20:26:26 +08:00
HistoryType,
make_context,
decode_tokens,
StopWordsLogitsProcessor,
)
logger = logging.get_logger(__name__)
2024-01-07 21:54:37 +08:00
2024-01-03 20:26:26 +08:00
class QWenAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
self.seq_length = config.seq_length
self.hidden_size = config.hidden_size
self.split_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.scale_attn_weights = True
self.projection_size = config.kv_channels * config.num_attention_heads
assert self.projection_size % config.num_attention_heads == 0
2024-01-07 21:54:37 +08:00
self.hidden_size_per_attention_head = self.projection_size // config.num_attention_heads
2024-01-03 20:26:26 +08:00
self.c_attn = nn.Linear(config.hidden_size, 3 * self.projection_size)
2024-01-07 21:54:37 +08:00
self.c_proj = nn.Linear(config.hidden_size, self.projection_size, bias=not config.no_bias)
2024-01-03 20:26:26 +08:00
self.use_dynamic_ntk = config.use_dynamic_ntk
2024-01-07 21:54:37 +08:00
logn_list = [math.log(i, self.seq_length) if i > self.seq_length else 1 for i in range(1, 32768)]
2024-01-03 20:26:26 +08:00
logn_tensor = torch.tensor(logn_list)[None, :, None, None]
self.register_buffer("logn_tensor", logn_tensor, persistent=False)
self.attn_dropout = nn.Dropout(config.attn_dropout_prob)
2024-01-07 21:54:37 +08:00
self.softmax_in_fp32 = config.softmax_in_fp32 if hasattr(config, "softmax_in_fp32") else False
self.use_cache_kernel = config.use_cache_kernel if hasattr(config, "use_cache_kernel") else False
2024-01-03 20:26:26 +08:00
cache_dtype = torch.float
self.cache_qmax = torch.tensor(torch.iinfo(torch.uint8).max, dtype=cache_dtype)
self.cache_qmin = torch.tensor(torch.iinfo(torch.uint8).min, dtype=cache_dtype)
def _split_heads(self, tensor, num_heads, attn_head_size):
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
tensor = tensor.view(new_shape)
return tensor
def _merge_heads(self, tensor, num_heads, attn_head_size):
tensor = tensor.contiguous()
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
return tensor.view(new_shape)
def forward(
self,
hidden_states: Optional[Tuple[torch.FloatTensor]],
rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
layer_past: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
):
mixed_x_layer = self.c_attn(hidden_states)
query, key, value = mixed_x_layer.split(self.split_size, dim=2)
query = self._split_heads(query, self.num_heads, self.head_dim)
key = self._split_heads(key, self.num_heads, self.head_dim)
value = self._split_heads(value, self.num_heads, self.head_dim)
2024-01-07 22:36:55 +08:00
rotary_pos_emb = rotary_pos_emb_list[0]
rotary_pos_emb = [i[:, -query.shape[1] :, :, :] for i in rotary_pos_emb]
rotary_pos_emb = (rotary_pos_emb,) * 2
q_pos_emb, k_pos_emb = rotary_pos_emb
# Slice the pos emb for current inference
query = apply_rotary_pos_emb(query, q_pos_emb)
key = apply_rotary_pos_emb(key, k_pos_emb)
2024-01-03 20:26:26 +08:00
if layer_past is not None:
past_key, past_value = layer_past[0], layer_past[1]
2024-01-07 16:53:53 +08:00
key = torch.cat((past_key, key), dim=1)
value = torch.cat((past_value, value), dim=1)
2024-01-03 20:26:26 +08:00
2024-01-07 22:36:55 +08:00
present = (key, value)
2024-01-03 20:26:26 +08:00
2024-01-07 16:53:53 +08:00
key_size = key.size(1)
2024-01-07 22:49:21 +08:00
if key_size > self.seq_length and not self.training:
2024-01-07 16:53:53 +08:00
seq_start = key.size(1) - query.size(1)
seq_end = key.size(1)
2024-01-03 20:26:26 +08:00
logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :].type_as(query)
query = query * logn_tensor.expand_as(query)
2024-01-07 16:53:53 +08:00
key_size = key.size(1)
2024-01-07 16:22:41 +08:00
if query.size(1) == key_size:
2024-01-07 21:54:37 +08:00
causal_mask = torch.tril(torch.ones((key_size, key_size), dtype=torch.bool, device=query.device)).view(
1, 1, key_size, key_size
)
2024-01-03 20:26:26 +08:00
else:
2024-01-07 16:22:41 +08:00
causal_mask = None
query = query.permute(0, 2, 1, 3)
2024-01-07 16:53:53 +08:00
key = key.permute(0, 2, 1, 3)
value = value.permute(0, 2, 1, 3)
if attention_mask is not None:
attention_mask = attention_mask.expand(-1, -1, causal_mask.size(2), -1)
if causal_mask is not None:
2024-01-07 21:54:37 +08:00
attention_mask = attention_mask.masked_fill(~causal_mask, torch.finfo(query.dtype).min)
2024-01-07 16:22:41 +08:00
else:
2024-01-07 16:53:53 +08:00
attention_mask = causal_mask
2024-01-07 22:49:21 +08:00
attn_output = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask).transpose(1, 2)
2024-01-07 16:23:04 +08:00
context_layer = self._merge_heads(attn_output, self.num_heads, self.head_dim)
2024-01-03 20:26:26 +08:00
attn_output = self.c_proj(context_layer)
outputs = (attn_output, present)
return outputs
class QWenMLP(nn.Module):
def __init__(self, config):
super().__init__()
ff_dim_in = config.intermediate_size // 2
2024-01-07 22:36:55 +08:00
self.w1 = nn.Linear(config.hidden_size, ff_dim_in, bias=not config.no_bias)
self.w2 = nn.Linear(config.hidden_size, ff_dim_in, bias=not config.no_bias)
2024-01-03 20:26:26 +08:00
self.c_proj = nn.Linear(ff_dim_in, config.hidden_size, bias=not config.no_bias)
def forward(self, hidden_states):
a1 = self.w1(hidden_states)
a2 = self.w2(hidden_states)
intermediate_parallel = a1 * F.silu(a2)
output = self.c_proj(intermediate_parallel)
return output
class QWenBlock(nn.Module):
def __init__(self, config):
super().__init__()
hidden_size = config.hidden_size
self.ln_1 = RMSNorm(
hidden_size,
eps=config.layer_norm_epsilon,
)
self.attn = QWenAttention(config)
self.ln_2 = RMSNorm(
hidden_size,
eps=config.layer_norm_epsilon,
)
self.mlp = QWenMLP(config)
def forward(
self,
hidden_states: Optional[Tuple[torch.FloatTensor]],
rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
layer_past: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
):
layernorm_output = self.ln_1(hidden_states)
attn_outputs = self.attn(
layernorm_output,
rotary_pos_emb_list,
layer_past=layer_past,
attention_mask=attention_mask,
)
attn_output = attn_outputs[0]
outputs = attn_outputs[1:]
residual = hidden_states
layernorm_input = attn_output + residual
layernorm_output = self.ln_2(layernorm_input)
residual = layernorm_input
mlp_output = self.mlp(layernorm_output)
hidden_states = residual + mlp_output
2024-01-07 22:36:55 +08:00
outputs = (hidden_states,) + outputs
2024-01-03 20:26:26 +08:00
return outputs
class QWenPreTrainedModel(PreTrainedModel):
config_class = QWenConfig
base_model_prefix = "transformer"
is_parallelizable = False
supports_gradient_checkpointing = True
_no_split_modules = ["QWenBlock"]
_skip_keys_device_placement = "past_key_values"
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
2024-01-07 21:54:37 +08:00
class QWenModel(QWenPreTrainedModel):
2024-01-03 20:26:26 +08:00
def __init__(self, config):
super().__init__(config)
self.vocab_size = config.vocab_size
self.num_hidden_layers = config.num_hidden_layers
self.embed_dim = config.hidden_size
self.use_dynamic_ntk = config.use_dynamic_ntk
self.seq_length = config.seq_length
self.wte = nn.Embedding(self.vocab_size, self.embed_dim)
self.drop = nn.Dropout(config.emb_dropout_prob)
if config.rotary_pct == 1.0:
self.rotary_ndims = None
else:
assert config.rotary_pct < 1
2024-01-07 16:23:04 +08:00
self.rotary_ndims = int(config.kv_channels * config.rotary_pct)
dim = self.rotary_ndims if self.rotary_ndims is not None else config.kv_channels
2024-01-03 20:26:26 +08:00
self.rotary_emb = RotaryEmbedding(dim, base=config.rotary_emb_base)
2024-01-07 21:54:37 +08:00
self.h = nn.ModuleList([QWenBlock(config) for i in range(config.num_hidden_layers)])
2024-01-03 20:26:26 +08:00
self.ln_f = RMSNorm(
self.embed_dim,
eps=config.layer_norm_epsilon,
)
self.post_init()
def get_ntk_alpha(self, true_seq_len):
context_value = math.log(true_seq_len / self.seq_length, 2) + 1
ntk_alpha = 2 ** math.ceil(context_value) - 1
ntk_alpha = max(ntk_alpha, 1)
return ntk_alpha
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
):
if input_ids is not None and inputs_embeds is not None:
2024-01-07 21:54:37 +08:00
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
2024-01-03 20:26:26 +08:00
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
batch_size = inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if past_key_values is None:
past_key_values = tuple([None] * len(self.h))
if attention_mask is not None:
attention_mask = attention_mask.view(batch_size, -1)
attention_mask = attention_mask[:, None, None, :]
attention_mask = attention_mask.to(dtype=self.dtype)
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
if inputs_embeds is None:
inputs_embeds = self.wte(input_ids)
hidden_states = inputs_embeds
kv_seq_len = hidden_states.size()[1]
if past_key_values[0] is not None:
# past key values[0][0] shape: bs * seq_len * head_num * dim
2024-01-07 16:53:53 +08:00
kv_seq_len += past_key_values[0][0].shape[1]
2024-01-03 20:26:26 +08:00
if self.training or not self.use_dynamic_ntk:
ntk_alpha_list = [1.0]
elif kv_seq_len != hidden_states.size()[1]:
ntk_alpha_list = self.rotary_emb._ntk_alpha_cached_list
else:
ntk_alpha_list = []
if attention_mask is not None and kv_seq_len > self.seq_length:
2024-01-07 21:54:37 +08:00
true_seq_lens = attention_mask.squeeze(1).squeeze(1).eq(0).sum(dim=-1, dtype=torch.int32)
2024-01-03 20:26:26 +08:00
for i in range(hidden_states.size()[0]):
true_seq_len = true_seq_lens[i].item()
ntk_alpha = self.get_ntk_alpha(true_seq_len)
ntk_alpha_list.append(ntk_alpha)
else:
ntk_alpha = self.get_ntk_alpha(kv_seq_len)
ntk_alpha_list.append(ntk_alpha)
self.rotary_emb._ntk_alpha_cached_list = ntk_alpha_list
2024-01-07 21:54:37 +08:00
rotary_pos_emb_list = [self.rotary_emb(kv_seq_len, ntk_alpha=ntk_alpha) for ntk_alpha in ntk_alpha_list]
2024-01-03 20:26:26 +08:00
hidden_states = self.drop(hidden_states)
output_shape = input_shape + (hidden_states.size(-1),)
2024-01-07 22:36:55 +08:00
presents = ()
2024-01-07 21:43:02 +08:00
all_hidden_states = None
2024-01-03 20:26:26 +08:00
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
2024-01-07 17:50:58 +08:00
outputs = block(
hidden_states,
layer_past=layer_past,
rotary_pos_emb_list=rotary_pos_emb_list,
attention_mask=attention_mask,
)
2024-01-03 20:26:26 +08:00
hidden_states = outputs[0]
2024-01-07 22:36:55 +08:00
presents = presents + (outputs[1],)
2024-01-03 20:26:26 +08:00
hidden_states = self.ln_f(hidden_states)
hidden_states = hidden_states.view(output_shape)
return BaseModelOutputWithPast(
2024-01-07 22:36:55 +08:00
last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states
2024-01-03 20:26:26 +08:00
)
class QWenLMHeadModel(QWenPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.transformer = QWenModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.post_init()
2024-01-07 21:54:37 +08:00
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
2024-01-03 20:26:26 +08:00
if past_key_values:
input_ids = input_ids[:, -1].unsqueeze(-1)
if input_ids.size(0) == 1:
attention_mask = None
else:
attention_mask = kwargs.get("attention_mask", None)
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"past_key_values": past_key_values,
"attention_mask": attention_mask,
}
)
return model_inputs
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
)
hidden_states = transformer_outputs[0]
lm_logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
labels = labels.to(lm_logits.device)
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss_fct = CrossEntropyLoss()
2024-01-07 21:54:37 +08:00
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
2024-01-03 20:26:26 +08:00
# shift_labels = torch.ones([1,19]).to(lm_logits.device).to(torch.int64)
# shift_logits = lm_logits[..., :-1, :].contiguous()
# loss_fct = CrossEntropyLoss()
# loss = loss_fct(
# shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
# )
# loss.backward()
2024-01-03 20:26:26 +08:00
return CausalLMOutputWithPast(
loss=loss,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def chat(
self,
tokenizer: PreTrainedTokenizer,
query: str,
2024-01-10 19:35:46 +08:00
query_assistant: str,
2024-01-03 20:26:26 +08:00
history: Optional[HistoryType],
system: str = "You are a helpful assistant.",
**kwargs,
) -> Tuple[str, HistoryType]:
2024-01-10 21:16:54 +08:00
generation_config = self.generation_config
2024-01-03 20:26:26 +08:00
if history is None:
history = []
else:
history = copy.deepcopy(history)
2024-01-10 21:16:54 +08:00
stop_words_ids = []
2024-01-03 20:26:26 +08:00
2024-01-07 16:23:04 +08:00
max_window_size = kwargs.get("max_window_size", None)
2024-01-03 20:26:26 +08:00
if max_window_size is None:
max_window_size = generation_config.max_window_size
raw_text, context_tokens = make_context(
tokenizer,
query,
2024-01-10 19:35:46 +08:00
query_assistant,
2024-01-03 20:26:26 +08:00
history=history,
system=system,
2024-01-10 19:35:46 +08:00
max_window_size=max_window_size
2024-01-03 20:26:26 +08:00
)
2024-01-10 21:16:54 +08:00
stop_words_ids.extend([[tokenizer.im_end_id], [tokenizer.im_start_id]])
2024-01-03 20:26:26 +08:00
input_ids = torch.tensor([context_tokens]).to(self.device)
outputs = self.generate(
2024-01-07 16:23:04 +08:00
input_ids,
stop_words_ids=stop_words_ids,
**kwargs,
)
2024-01-10 19:35:46 +08:00
decoded, response, end_reason = decode_tokens(
2024-01-03 20:26:26 +08:00
outputs[0],
tokenizer,
raw_text_len=len(raw_text),
context_length=len(context_tokens),
2024-01-07 16:23:04 +08:00
errors="replace",
2024-01-03 20:26:26 +08:00
)
history.append((query, response))
2024-01-10 19:35:46 +08:00
return response, history, decoded
2024-01-03 20:26:26 +08:00
def generate(
self,
inputs: Optional[torch.Tensor] = None,
2024-01-10 21:16:54 +08:00
stop_words_ids = [],
2024-01-07 21:54:37 +08:00
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
2024-01-03 20:26:26 +08:00
streamer: Optional["BaseStreamer"] = None,
**kwargs,
) -> Union[GenerateOutput, torch.LongTensor]:
2024-01-10 21:16:54 +08:00
generation_config = self.generation_config
2024-01-03 20:26:26 +08:00
# 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call
self._validate_model_class()
generation_config = copy.deepcopy(generation_config)
2024-01-07 21:54:37 +08:00
model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs
generation_config.validate()
self._validate_model_kwargs(model_kwargs.copy())
# 2. Set generation parameters if not already defined
2024-01-10 21:16:54 +08:00
2024-01-07 21:54:37 +08:00
if generation_config.pad_token_id is None and generation_config.eos_token_id is not None:
if model_kwargs.get("attention_mask", None) is None:
logger.warning(
"The attention mask and the pad token id were not set. As a consequence, you may observe "
"unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
)
eos_token_id = generation_config.eos_token_id
if isinstance(eos_token_id, list):
eos_token_id = eos_token_id[0]
2024-01-07 21:54:37 +08:00
logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.")
generation_config.pad_token_id = eos_token_id
# 3. Define model inputs
inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(
inputs, generation_config.bos_token_id, model_kwargs
)
# 4. Define other model kwargs
2024-01-07 21:54:37 +08:00
accepts_attention_mask = "attention_mask" in set(inspect.signature(self.forward).parameters.keys())
requires_attention_mask = "encoder_outputs" not in model_kwargs
2024-01-07 21:54:37 +08:00
if model_kwargs.get("attention_mask", None) is None and requires_attention_mask and accepts_attention_mask:
model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation(
2024-01-07 16:23:04 +08:00
inputs_tensor,
generation_config.pad_token_id,
generation_config.eos_token_id,
)
# 5. Prepare `input_ids` which will be used for auto-regressive generation
2024-01-07 21:54:37 +08:00
input_ids = inputs_tensor if model_input_name == "input_ids" else model_kwargs.pop("input_ids")
if streamer is not None:
streamer.put(input_ids.cpu())
# 6. Prepare `max_length` depending on other stopping criteria.
input_ids_length = input_ids.shape[-1]
2024-01-07 21:54:37 +08:00
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
generation_config.max_length = generation_config.max_new_tokens + input_ids_length
self._validate_generated_length(generation_config, input_ids_length, has_default_max_length)
2024-01-11 15:00:18 +08:00
stop_words_logits_processor = StopWordsLogitsProcessor(
stop_words_ids=stop_words_ids,
eos_token_id=generation_config.eos_token_id,
)
logits_processor = LogitsProcessorList([stop_words_logits_processor])
logits_processor = self._get_logits_processor(
generation_config=generation_config,
input_ids_seq_length=input_ids_length,
encoder_input_ids=inputs_tensor,
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
logits_processor=logits_processor,
model_kwargs=model_kwargs,
2024-01-10 21:16:54 +08:00
negative_prompt_ids=None,
negative_prompt_attention_mask=None,
)
# 12. expand input_ids with `num_return_sequences` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_return_sequences,
2024-01-07 16:53:53 +08:00
is_encoder_decoder=False,
**model_kwargs,
)
# 13. run sample
2024-01-11 15:00:18 +08:00
pad_token_id=generation_config.pad_token_id
eos_token_id=generation_config.eos_token_id
streamer=streamer
# init values
2024-01-11 15:00:18 +08:00
stopping_criteria = self._get_stopping_criteria(
generation_config=generation_config, stopping_criteria=StoppingCriteriaList()
)
logits_warper = self._get_logits_warper(generation_config)
2024-01-07 21:43:02 +08:00
2024-01-07 21:54:37 +08:00
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
2024-01-07 21:54:37 +08:00
eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
# init attention / hidden states / scores tuples
2024-01-07 17:32:24 +08:00
scores = None
# keep track of which sequences are already finished
2024-01-07 21:54:37 +08:00
unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
2024-01-07 22:36:55 +08:00
this_peer_finished = False
# auto-regressive generation
while True:
# prepare model inputs
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
# forward pass to get next token
2024-01-07 22:36:55 +08:00
outputs = self(**model_inputs)
2024-01-11 15:00:18 +08:00
next_token_scores = outputs.logits[:, -1, :]
# pre-process distribution
2024-01-11 15:00:18 +08:00
next_token_scores = logits_processor(input_ids, next_token_scores)
next_token_scores = logits_warper(input_ids, next_token_scores)
# sample
probs = nn.functional.softmax(next_token_scores, dim=-1)
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
# finished sentences should have their next token be a padding token
if eos_token_id is not None:
2024-01-07 21:54:37 +08:00
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
# update generated ids, model inputs, and length for next step
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
if streamer is not None:
streamer.put(next_tokens.cpu())
2024-01-07 21:54:37 +08:00
model_kwargs = self._update_model_kwargs_for_generation(outputs, model_kwargs, is_encoder_decoder=False)
# if eos_token was found in one sentence, set sentence to finished
if eos_token_id_tensor is not None:
unfinished_sequences = unfinished_sequences.mul(
2024-01-07 21:54:37 +08:00
next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
)
# stop when each sentence is finished
if unfinished_sequences.max() == 0:
this_peer_finished = True
# stop if we exceed the maximum length
if stopping_criteria(input_ids, scores):
this_peer_finished = True
2024-01-07 16:53:53 +08:00
if this_peer_finished:
break
if streamer is not None:
streamer.end()
return input_ids
2024-01-03 20:26:26 +08:00
class RotaryEmbedding(torch.nn.Module):
def __init__(self, dim, base=10000):
super().__init__()
self.dim = dim
self.base = base
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
self._rotary_pos_emb_cache = None
self._seq_len_cached = 0
self._ntk_alpha_cached = 1.0
self._ntk_alpha_cached_list = [1.0]
def update_rotary_pos_emb_cache(self, seqlen, ntk_alpha=1.0):
if seqlen > self._seq_len_cached or ntk_alpha != self._ntk_alpha_cached:
base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
self.inv_freq = 1.0 / (
2024-01-07 21:54:37 +08:00
base ** (torch.arange(0, self.dim, 2, device=self.inv_freq.device).float() / self.dim)
2024-01-03 20:26:26 +08:00
)
self._seq_len_cached = max(2 * seqlen, 16)
self._ntk_alpha_cached = ntk_alpha
seq = torch.arange(self._seq_len_cached, device=self.inv_freq.device)
freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
emb = rearrange(emb, "n d -> 1 n 1 d")
cos, sin = emb.cos(), emb.sin()
self._rotary_pos_emb_cache = [cos, sin]
def forward(self, max_seq_len, ntk_alpha=1.0):
self.update_rotary_pos_emb_cache(max_seq_len, ntk_alpha)
cos, sin = self._rotary_pos_emb_cache
return [cos[:, :max_seq_len], sin[:, :max_seq_len]]
def _rotate_half(x):
x = rearrange(x, "... (j d) -> ... j d", j=2)
x1, x2 = x.unbind(dim=-2)
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(t, freqs):
rot_dim = freqs[0].shape[-1]
cos, sin = freqs
t_float = t.float()
2024-01-07 16:53:53 +08:00
t_rot, t_pass = t_float[..., :rot_dim], t_float[..., rot_dim:]
t_rot = (t_rot * cos) + (_rotate_half(t_rot) * sin)
return torch.cat((t_rot, t_pass), dim=-1).type_as(t)
2024-01-03 20:26:26 +08:00
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
2024-01-07 16:53:53 +08:00
output = self._norm(x.float()).type_as(x)
return output * self.weight