Witllm/binary/mnist.py

311 lines
9.9 KiB
Python
Raw Normal View History

2025-05-20 14:07:10 +08:00
import os
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
from torchvision import transforms
from torch.utils.data import DataLoader
import math
import torch.nn.functional as F
import numpy as np
2025-05-22 15:23:41 +08:00
from torch.utils.tensorboard import SummaryWriter
2025-05-26 16:11:11 +08:00
from torch.profiler import profile, ProfilerActivity, record_function
2025-05-27 18:51:07 +08:00
from unfold import generate_unfold_index
2025-05-22 15:23:41 +08:00
import datetime
2025-05-20 14:07:10 +08:00
torch.manual_seed(1234)
np.random.seed(1234)
torch.cuda.manual_seed_all(1234)
2025-05-27 18:51:07 +08:00
BS = 16
LR = 0.001
2025-05-20 14:07:10 +08:00
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))] # MNIST数据集的均值和标准差
)
train_dataset = torchvision.datasets.MNIST(root="./data", train=True, download=True, transform=transform)
test_dataset = torchvision.datasets.MNIST(root="./data", train=False, download=True, transform=transform)
2025-06-01 12:31:49 +08:00
train_loader = DataLoader(train_dataset, batch_size=BS, shuffle=True, drop_last=True, num_workers=4)
test_loader = DataLoader(test_dataset, batch_size=BS, shuffle=False, drop_last=True)
2025-05-20 14:07:10 +08:00
2025-05-21 11:29:15 +08:00
class Lut(torch.autograd.Function):
2025-05-28 16:05:34 +08:00
# input [batch, group, bits ]
# output [batch, group ]
# weight [2**bits, group ]
2025-05-20 14:07:10 +08:00
@staticmethod
2025-05-28 16:05:34 +08:00
def forward(ctx, input, weight, index):
2025-05-26 16:11:11 +08:00
ind = ((input > 0).long() * index).sum(dim=-1)
2025-05-28 16:05:34 +08:00
output = torch.gather(weight, 0, ind)
ctx.save_for_backward(input, weight, ind)
2025-06-01 12:31:49 +08:00
output = (output > 0).float()
2025-05-20 14:07:10 +08:00
return output
@staticmethod
def backward(ctx, grad_output):
2025-05-28 16:05:34 +08:00
input, weight, ind = ctx.saved_tensors
2025-05-20 14:07:10 +08:00
grad_input = grad_weight = None
bits = input.shape[2]
if ctx.needs_input_grad[1]:
grad_weight = torch.zeros_like(weight)
2025-05-28 16:05:34 +08:00
grad_weight.scatter_add_(0, ind, grad_output)
2025-05-20 14:07:10 +08:00
if ctx.needs_input_grad[0]:
2025-05-28 16:05:34 +08:00
grad_input = grad_output * torch.gather(weight, 0, ind)
2025-05-20 14:07:10 +08:00
grad_input = grad_input.unsqueeze(-1).repeat(1, 1, bits)
2025-05-28 16:05:34 +08:00
return grad_input, grad_weight, None
2025-05-20 14:07:10 +08:00
class SimpleCNN(nn.Module):
def __init__(self):
super(SimpleCNN, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.bn = nn.BatchNorm1d(320 * 4)
self.fc1 = nn.Linear(160, 50)
self.fc2 = nn.Linear(50, 10)
self.pool = nn.MaxPool2d(2)
self.relu = nn.ReLU()
self.weight = nn.Parameter(torch.randn(160, pow(2, 8)))
def forward(self, x):
x = self.relu(self.pool(self.conv1(x)))
x = self.relu((self.conv2(x)))
x = x.view(-1, 320 * 4)
x = self.bn(x)
x = x.view(-1, 160, 8)
2025-05-21 11:29:15 +08:00
x = Lut.apply(x, self.weight)
2025-05-20 14:07:10 +08:00
x = self.relu(self.fc1(x))
x = self.fc2(x)
return x
class LutGroup(nn.Module):
2025-05-28 16:05:34 +08:00
def __init__(self, group, groupBits, groupRepeat=1):
assert groupBits > 1
2025-05-20 14:07:10 +08:00
super(LutGroup, self).__init__()
2025-05-28 16:05:34 +08:00
self.weight = nn.Parameter(torch.randn(pow(2, groupBits), int(groupRepeat * group)))
self.group = group
2025-05-22 15:23:41 +08:00
self.groupBits = groupBits
2025-05-28 16:05:34 +08:00
self.groupRepeat = groupRepeat
self.index = nn.Parameter(2 ** torch.arange(groupBits - 1, -1, -1), requires_grad=False)
2025-05-20 14:07:10 +08:00
def forward(self, x):
2025-05-28 16:05:34 +08:00
# input [ batch, group * groupBits ]
# output [ batch, group * groupRepeat ]
2025-05-21 11:29:15 +08:00
batch = x.shape[0]
2025-05-22 15:23:41 +08:00
x = x.view(batch, -1, self.groupBits)
2025-05-28 16:05:34 +08:00
if self.groupRepeat > 1:
x = x.repeat(1, self.groupRepeat, 1)
x = Lut.apply(x, self.weight, self.index)
2025-05-21 11:29:15 +08:00
return x
2025-05-20 14:07:10 +08:00
2025-05-27 18:51:07 +08:00
class LutCnn(nn.Module):
def __init__(self, output_c, input_shape, kernel_size, stride, dilation):
super(LutCnn, self).__init__()
2025-05-28 16:05:34 +08:00
B, C, H, W = input_shape
2025-05-27 18:51:07 +08:00
self.input_shape = input_shape
self.kernel_size = kernel_size
self.stride = stride
self.dilation = dilation
batch_idx, channel_idx, h_idx, w_idx = generate_unfold_index(input_shape, kernel_size, stride, dilation)
self.batch_idx = nn.Parameter(batch_idx, requires_grad=False)
self.channel_idx = nn.Parameter(channel_idx, requires_grad=False)
self.h_idx = nn.Parameter(h_idx, requires_grad=False)
self.w_idx = nn.Parameter(w_idx, requires_grad=False)
2025-05-28 16:05:34 +08:00
groupBits = kernel_size * kernel_size
self.lut = LutGroup(len(self.batch_idx) / B / groupBits, groupBits, output_c)
2025-05-27 18:51:07 +08:00
def forward(self, x):
B, C, H, W = self.input_shape
x = x.view(self.input_shape)
x = x[(self.batch_idx, self.channel_idx, self.h_idx, self.w_idx)]
x = x.view(B, -1, self.kernel_size * self.kernel_size)
x = self.lut(x)
return x
2025-05-20 14:07:10 +08:00
class SimpleBNN(nn.Module):
def __init__(self):
2025-05-21 11:29:15 +08:00
super(SimpleBNN, self).__init__()
# self.w = nn.Parameter(torch.randn(3, 784 * 8))
# self.b = nn.Parameter(torch.zeros(3, 784 * 8))
self.w = nn.Parameter(torch.randn(3, 784))
self.b = nn.Parameter(torch.zeros(3, 784))
2025-05-27 18:51:07 +08:00
# output_c, input_shape, kernel_size, stride, dilation
self.lnn1 = LutCnn(8, (BS, 1, 28, 28), 2, 2, 1)
self.lnn2 = LutCnn(1, (BS, 8, 14, 14), 2, 2, 1)
self.lnn3 = LutCnn(1, (BS, 8, 7, 7), 3, 1, 1)
self.lnn4 = LutCnn(1, (BS, 8, 5, 5), 3, 1, 1)
self.lnn5 = LutCnn(10, (BS, 8, 3, 3), 3, 1, 1)
2025-05-21 11:29:15 +08:00
2025-06-01 12:31:49 +08:00
# self.lutg = LutGroup()
# class LutGroup(nn.Module):
# def __init__(self, group, groupBits, groupRepeat=1):
2025-05-21 11:29:15 +08:00
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
self.pool = nn.MaxPool2d(2)
self.relu = nn.ReLU()
2025-05-20 14:07:10 +08:00
def forward(self, x):
batch = x.shape[0]
2025-05-27 18:51:07 +08:00
# x = x.view(batch, -1)
2025-05-20 14:07:10 +08:00
# 变换x [-0.5:0.5] 到 0-255然后按照二进制展开成8个值
2025-05-21 11:29:15 +08:00
# x = (x * 256 + 128).clamp(0, 255).to(torch.uint8)
# xx = torch.arange(7, -1, -1).to(x.device)
# bits = (x.unsqueeze(-1) >> xx) & 1
# x = bits.view(batch, -1)
# x = x.float() - 0.5
2025-05-22 15:23:41 +08:00
# x = (x > 0).float()
2025-05-21 11:29:15 +08:00
2025-05-22 15:23:41 +08:00
# q = x * self.w[0] + self.b[0]
# k = x * self.w[1] + self.b[1]
# v = x * self.w[2] + self.b[2]
# q = q.view(batch, -1, 1)
# k = k.view(batch, 1, -1)
# v = v.view(batch, -1, 1)
# kq = q @ k
# kqv = kq @ v
# kqv = kqv.view(batch, -1, 8)
# x = kqv
2025-05-21 11:29:15 +08:00
#########################
2025-05-22 15:23:41 +08:00
# # x = (x > 0) << xx
# # x = x.sum(2)
# # x = x.view(batch, 1, 28, 28)
# # x = (x - 128.0) / 256.0
2025-05-21 11:29:15 +08:00
# x = (x > 0).float()
2025-05-22 15:23:41 +08:00
# x = x.view(batch, 1, 28, 28)
2025-05-21 11:29:15 +08:00
# x = self.relu(self.pool(self.conv1(x)))
# x = self.relu(self.pool((self.conv2(x))))
# x = x.view(-1, 320)
# x = self.relu(self.fc1(x))
# x = self.fc2(x)
#########################
2025-05-27 18:51:07 +08:00
x = self.lnn1(x)
x = self.lnn2(x)
x = self.lnn3(x)
x = self.lnn4(x)
x = self.lnn5(x)
2025-05-22 15:23:41 +08:00
# xx = 2 ** torch.arange(7, -1, -1).to(x.device)
x = x.view(batch, -1, 8)
# x = x * xx
# x = (x - 128.0) / 256.0
x = x.sum(2)
2025-05-21 11:29:15 +08:00
2025-05-20 14:07:10 +08:00
return x
torch.autograd.set_detect_anomaly(True)
2025-05-21 11:29:15 +08:00
# model = SimpleCNN().to(device)
model = SimpleBNN().to(device)
2025-05-20 14:07:10 +08:00
criterion = nn.CrossEntropyLoss()
2025-05-27 18:51:07 +08:00
optimizer = torch.optim.AdamW(model.parameters(), lr=LR)
2025-05-22 15:23:41 +08:00
2025-05-26 16:11:11 +08:00
tbWriter = None
def AddScalar(tag, value, epoch):
global tbWriter
if not tbWriter:
current_time = datetime.datetime.now().strftime("%m%d-%H%M%S")
tbWriter = SummaryWriter(f"log/{current_time}")
2025-05-27 18:51:07 +08:00
hparam_dict = {"lr": LR, "batch_size": BS}
2025-05-26 16:11:11 +08:00
tbWriter.add_hparams(hparam_dict, {}, run_name=f"./")
tbWriter.add_scalar(tag, value, epoch)
2025-05-20 14:07:10 +08:00
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
2025-05-26 16:11:11 +08:00
AddScalar("loss", loss, epoch)
if batch_idx % 512 == 0 and batch_idx > 0:
2025-05-20 14:07:10 +08:00
print(
f"Train Epoch: {epoch} [{batch_idx * len(data)}/{len(train_loader.dataset)} "
f"({100. * batch_idx / len(train_loader):.0f}%)]\tLoss: {loss.item():.6f}"
)
2025-05-22 15:23:41 +08:00
def test(epoch):
2025-05-20 14:07:10 +08:00
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += criterion(output, target).item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
accuracy = 100.0 * correct / len(test_loader.dataset)
2025-05-26 16:11:11 +08:00
AddScalar("accuracy", accuracy, epoch)
2025-05-20 14:07:10 +08:00
print(
f"\nTest set: Average loss: {test_loss:.4f}, Accuracy: {correct}/{len(test_loader.dataset)} "
f"({accuracy:.0f}%)\n"
)
2025-05-26 16:11:11 +08:00
def profiler():
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
with profile(activities=[ProfilerActivity.CUDA], record_shapes=True) as prof:
with record_function("model_inference"):
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
2025-05-28 16:05:34 +08:00
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
2025-05-27 18:51:07 +08:00
if batch_idx > 10:
2025-05-28 16:05:34 +08:00
prof.export_chrome_trace("local.json")
2025-05-27 18:51:07 +08:00
assert False
2025-05-26 16:11:11 +08:00
# profiler()
2025-05-22 15:23:41 +08:00
for epoch in range(1, 300):
2025-05-20 14:07:10 +08:00
train(epoch)
2025-05-22 15:23:41 +08:00
test(epoch)
2025-05-20 14:07:10 +08:00
# torch.save(model.state_dict(), "mnist_cnn.pth")
print("Model saved to mnist_cnn.pth")
2025-05-26 16:11:11 +08:00
if tbWriter:
tbWriter.close()