add seqgpt and prompt_clue

This commit is contained in:
Colin 2024-01-06 21:05:39 +08:00
parent 65578680cf
commit 0dd2f2bab4
18 changed files with 504166 additions and 151 deletions

View File

@ -730,7 +730,7 @@ class T5Block(nn.Module):
return outputs return outputs
class T5PreTrainedModel(TorchModel, PreTrainedModel): class T5PreTrainedModel(PreTrainedModel):
""" """
An abstract class to handle weights initialization and a simple interface An abstract class to handle weights initialization and a simple interface
for downloading and loading pretrained models. for downloading and loading pretrained models.
@ -743,8 +743,7 @@ class T5PreTrainedModel(TorchModel, PreTrainedModel):
supports_gradient_checkpointing = True supports_gradient_checkpointing = True
def __init__(self, config, **kwargs): def __init__(self, config, **kwargs):
super().__init__(config.name_or_path, **kwargs) super().__init__(config, **kwargs)
super(Model, self).__init__(config)
@property @property
def dummy_inputs(self): def dummy_inputs(self):

30
prompt_clue/config.json Normal file
View File

@ -0,0 +1,30 @@
{
"architectures": [
"T5ForConditionalGeneration"
],
"d_ff": 2048,
"d_kv": 64,
"d_model": 768,
"decoder_start_token_id": 0,
"dense_act_fn": "gelu_new",
"dropout_rate": 0.1,
"eos_token_id": 1,
"feed_forward_proj": "gated-gelu",
"initializer_factor": 1.0,
"is_encoder_decoder": true,
"is_gated_act": true,
"layer_norm_epsilon": 1e-06,
"model_type": "t5",
"num_decoder_layers": 12,
"num_heads": 12,
"num_layers": 12,
"output_past": true,
"pad_token_id": 0,
"relative_attention_max_distance": 128,
"relative_attention_num_buckets": 32,
"tie_word_embeddings": false,
"torch_dtype": "float32",
"transformers_version": "4.26.0.dev0",
"use_cache": true,
"vocab_size": 32128
}

View File

@ -0,0 +1,11 @@
{
"framework": "pytorch",
"task": "text2text-generation",
"model": {
"type": "T5",
"language": "zh"
},
"pipeline": {
"type": "text2text-generation"
}
}

View File

@ -1,21 +1,51 @@
import torch
from modelscope.pipelines import pipeline from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks from modelscope.utils.constant import Tasks
# from modelscope.models.nlp import T5ForConditionalGeneration
from modelscope.preprocessors import TextGenerationTransformersPreprocessor from modelscope.preprocessors import TextGenerationTransformersPreprocessor
from modeling_t5 import T5ForConditionalGeneration from modeling_t5 import T5ForConditionalGeneration
from modelscope.utils.config import Config
from configuration import T5Config
from modelscope import snapshot_download
from transformers import AutoConfig
model = T5ForConditionalGeneration.from_pretrained( seed = 4321
"ClueAI/PromptCLUE-base-v1-5", revision="v0.1" torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
model_dir = snapshot_download("ClueAI/PromptCLUE-base-v1-5")
# config = T5Config()
config, kwargs = AutoConfig.from_pretrained(
model_dir,
return_unused_kwargs=True,
trust_remote_code=True,
code_revision=None,
_commit_hash=None,
) )
preprocessor = TextGenerationTransformersPreprocessor(model.model_dir)
model = T5ForConditionalGeneration(config)
model = model.from_pretrained(model_dir)
preprocessor = TextGenerationTransformersPreprocessor(model_dir)
out = preprocessor._tokenize_text("生成与下列文字相同意")
tokenizer = preprocessor.nlp_tokenizer
response, history = model.chat(tokenizer, "生成与下列文字相同意", history=[])
# model = T5ForConditionalGeneration.from_pretrained(
# "ClueAI/PromptCLUE-base-v1-5", revision="v0.1"
# )
pipeline_t2t = pipeline( pipeline_t2t = pipeline(
task=Tasks.text2text_generation, model=model, preprocessor=preprocessor task=Tasks.text2text_generation, model=model, preprocessor=preprocessor
) )
print(pipeline_t2t("生成与下列文字相同意思的句子:\n白云遍地无人扫\n答案:", do_sample=True, top_p=0.8)) print(pipeline_t2t("生成与下列文字相同意思的句子:\n白云遍地无人扫\n答案:", do_sample=True, top_p=0.8))
# {'text': '白云散去无踪,没人扫。'} # {'text': '白云散去无踪,没人扫。'}

View File

@ -14,7 +14,8 @@
# limitations under the License. # limitations under the License.
import copy import copy
import warnings import warnings
from typing import Optional, Tuple, Union from typing import Optional, Tuple, Union, List, Dict, Any
import torch import torch
from torch import nn from torch import nn
@ -145,148 +146,6 @@ class T5ForConditionalGeneration(T5PreTrainedModel):
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
**kwargs, **kwargs,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. T5 is a model
with relative position embeddings so you should be able to pad the
inputs on both the right and the left.
Indices can be obtained using [`T5Tokenizer`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`]
for detail.
[What are input IDs?](../glossary#input-ids)
To know more on how to prepare `input_ids` for pretraining take a
look a [T5 Training](./t5#training).
attention_mask (`torch.FloatTensor` of shape `(batch_size,sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask
values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`T5Tokenizer`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`]
for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
T5 uses the `pad_token_id` as the starting token for
`decoder_input_ids` generation. If `past_key_values` is used,
optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
To know more on how to prepare `decoder_input_ids` for pretraining
take a look at [T5 Training](./t5#training).
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in
`decoder_input_ids`. Causal mask will also be used by default.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the
encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or
`(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the
decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in
the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*,
`optional`: *attentions*) `last_hidden_state` of shape `(batch_size,
sequence_length, hidden_size)` is a sequence of hidden states at the
output of the last layer of the encoder. Used in the cross-attention
of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length
`config.n_layers` with each tuple having 4 tensors of shape
`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention
blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only
the last `decoder_input_ids` (those that don't have their past key
value states given to this model) of shape `(batch_size, 1)` instead
of all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to
directly pass an embedded representation. This is useful if you want
more control over how to convert `input_ids` indices into associated
vectors than the model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`,
*optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to
directly pass an embedded representation. If `past_key_values` is
used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more
control over how to convert `decoder_input_ids` indices into
associated vectors than the model's internal embedding lookup
matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset,
`decoder_inputs_embeds` takes the value of `inputs_embeds`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned
and can be used to speed up decoding (see `past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention
layers. See `attentions` under returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See
`hidden_states` under returned tensors for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain
tuple.
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss.
Indices should be in `[-100, 0, ..., config.vocab_size - 1]`. All
labels set to `-100` are ignored (masked), the loss is only computed
for labels in `[0, ..., config.vocab_size]`
Returns:
Examples:
>>> from transformers import T5Tokenizer, T5ForConditionalGeneration
>>> tokenizer = T5Tokenizer.from_pretrained("t5-small")
>>> model = T5ForConditionalGeneration.from_pretrained("t5-small")
>>> # training
>>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids
>>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids
>>> outputs = model(input_ids=input_ids, labels=labels)
>>> loss = outputs.loss
>>> logits = outputs.logits
>>> # inference
>>> input_ids = tokenizer(
... "summarize: studies have shown that owning a dog is good for you", return_tensors="pt"
>>> ).input_ids # Batch size 1
>>> outputs = model.generate(input_ids)
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
>>> # studies have shown that owning a dog is good for you.
"""
use_cache = use_cache if use_cache is not None else self.config.use_cache use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = ( return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict return_dict if return_dict is not None else self.config.use_return_dict
@ -440,6 +299,82 @@ class T5ForConditionalGeneration(T5PreTrainedModel):
sequences=output if isinstance(output, torch.Tensor) else output[0] sequences=output if isinstance(output, torch.Tensor) else output[0]
) )
def chat(
self,
tokenizer,
query: str,
history: List[Tuple[str, str]] = None,
role: str = "user",
):
if history is None:
history = []
token = tokenizer(query)
inputs = torch.as_tensor([token["input_ids"]])
inputs_tensor = inputs.to(next(self.parameters()).device)
generation_config = copy.deepcopy(self.generation_config)
# inputs_tensor = inputs["input_ids"]
input_ids = inputs_tensor.repeat_interleave(
generation_config.num_return_sequences, dim=0
)
outputs = self.sample(
input_ids,
generation_config.pad_token_id,
generation_config.eos_token_id,
generation_config.output_hidden_states,
tokenizer,
)
outputs = outputs.tolist()[0][:]
response = tokenizer.decode(outputs)
history.append({"role": role, "content": query})
return response, history
def sample(
self,
input_ids: torch.LongTensor,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[Union[int, List[int]]] = None,
output_hidden_states: Optional[bool] = None,
tokenizer=None,
):
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device)
isFinished = torch.zeros(
input_ids.shape[0], dtype=torch.long, device=input_ids.device
)
# token_count = 0
while True:
input_ids_in = input_ids
# batch_size, seq_length = input_ids_in.shape
# position_ids_in = (
# torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
# .unsqueeze(0)
# .repeat(batch_size, 1)
# )
# model_inputs = {"input_ids": input_ids_in, "position_ids": position_ids_in}
# input_ids_in = self.prepare_inputs_for_generation(input_ids)
probs, next_tokens = self(input_ids)
# **model_inputs,
# output_hidden_states=output_hidden_states,
# tokenizer=tokenizer,
# )
# finished sentences should add a padding token to next
pad_token = pad_token_id * isFinished
next_tokens = next_tokens * (1 - isFinished) + pad_token
isFinished = isFinished | next_tokens.eq(eos_token_id_tensor)
if isFinished.min() == 1: # all batch is finish
break
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
return input_ids
def _reorder_cache(self, past, beam_idx): def _reorder_cache(self, past, beam_idx):
# if decoder past is not included in output # if decoder past is not included in output
# speedy decoding is disabled and no need to reorder # speedy decoding is disabled and no need to reorder

33
seqgpt/config.json Normal file
View File

@ -0,0 +1,33 @@
{
"_name_or_path": "./bloomz_560m_pretrained",
"apply_residual_connection_post_layernorm": false,
"architectures": [
"BloomForCausalLM"
],
"attention_dropout": 0.0,
"attention_softmax_in_fp32": true,
"bias_dropout_fusion": true,
"bos_token_id": 1,
"eos_token_id": 2,
"hidden_dropout": 0.0,
"hidden_size": 1024,
"initializer_range": 0.02,
"layer_norm_epsilon": 1e-05,
"masked_softmax_fusion": true,
"model_type": "bloom",
"n_head": 16,
"n_inner": null,
"n_layer": 24,
"offset_alibi": 100,
"pad_token_id": 3,
"pretraining_tp": 1,
"seq_length": 2048,
"skip_bias_add": true,
"skip_bias_add_qkv": false,
"slow_but_exact": false,
"torch_dtype": "float16",
"transformers_version": "4.28.1",
"unk_token_id": 0,
"use_cache": true,
"vocab_size": 250880
}

11
seqgpt/configuration.json Normal file
View File

@ -0,0 +1,11 @@
{
"framework": "pytorch",
"task": "text-generation",
"model": {
"type": "bloom"
},
"pipeline": {
"type": "seqgpt"
},
"allow_remote": true
}

View File

@ -0,0 +1,242 @@
# coding=utf-8
# Copyright 2022 the Big Science Workshop and HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Bloom configuration"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, List, Mapping, Optional
from packaging import version
if TYPE_CHECKING:
from ... import PreTrainedTokenizer, TensorType
from transformers.configuration_utils import PretrainedConfig
from transformers.onnx import OnnxConfigWithPast, PatchingSpec
from transformers.utils import is_torch_available, logging
logger = logging.get_logger(__name__)
BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json",
"bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json",
"bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json",
"bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json",
"bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json",
"bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json",
}
class BloomConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a [`BloomModel`]. It is used to instantiate a Bloom
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to the Bloom architecture
[bigscience/bloom](https://huggingface.co/bigscience/bloom).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 250880):
Vocabulary size of the Bloom model. Defines the maximum number of different tokens that can be represented
by the `inputs_ids` passed when calling [`BloomModel`]. Check [this
discussion](https://huggingface.co/bigscience/bloom/discussions/120#633d28389addb8530b406c2a) on how the
`vocab_size` has been defined.
hidden_size (`int`, *optional*, defaults to 64):
Dimensionality of the embeddings and hidden states.
n_layer (`int`, *optional*, defaults to 2):
Number of hidden layers in the Transformer encoder.
n_head (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
The epsilon to use in the layer normalization layers.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
apply_residual_connection_post_layernorm (`bool`, *optional*, defaults to `False`):
If enabled, use the layer norm of the hidden states as the residual in the transformer blocks
hidden_dropout (`float`, *optional*, defaults to 0.1):
Dropout rate of the dropout function on the bias dropout.
attention_dropout (`float`, *optional*, defaults to 0.1):
Dropout rate applied to the attention probs
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
pretraining_tp (`int`, *optional*, defaults to `1`):
Experimental feature. Tensor parallelism rank used during pretraining with Megatron. Please refer to [this
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
issue](https://github.com/pytorch/pytorch/issues/76232). Note also that this is enabled only when
`slow_but_exact=True`.
slow_but_exact (`bool`, *optional*, defaults to `False`):
Experimental feature. Whether to use slow but exact implementation of the attention mechanism. While
merging the TP rank tensors, due to slicing operations the results may be slightly different between the
model trained on Megatron and our model. Please refer to [this
issue](https://github.com/pytorch/pytorch/issues/76232). A solution to obtain more accurate results is to
enable this feature. Enabling this will hurt the computational time of the inference. Will be probably
resolved in the future once the main model has been fine-tuned with TP_rank=1.
Example:
```python
>>> from transformers import BloomConfig, BloomModel
>>> # Initializing a Bloom configuration
>>> configuration = BloomConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = BloomModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "bloom"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"num_hidden_layers": "n_layer",
"num_attention_heads": "n_head",
}
def __init__(
self,
vocab_size=250880,
hidden_size=64,
n_layer=2,
n_head=8,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
use_cache=True,
bos_token_id=1,
eos_token_id=2,
apply_residual_connection_post_layernorm=False,
hidden_dropout=0.0,
attention_dropout=0.0,
pretraining_tp=1, # TP rank used when training with megatron
slow_but_exact=False,
**kwargs,
):
self.vocab_size = vocab_size
# Backward compatibility with n_embed kwarg
n_embed = kwargs.pop("n_embed", None)
self.hidden_size = hidden_size if n_embed is None else n_embed
self.n_layer = n_layer
self.n_head = n_head
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
self.use_cache = use_cache
self.pretraining_tp = pretraining_tp
self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
self.hidden_dropout = hidden_dropout
self.attention_dropout = attention_dropout
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
self.slow_but_exact = slow_but_exact
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
class BloomOnnxConfig(OnnxConfigWithPast):
torch_onnx_minimum_version = version.parse("1.12")
def __init__(
self,
config: PretrainedConfig,
task: str = "default",
patching_specs: List[PatchingSpec] = None,
use_past: bool = False,
):
super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past)
if not getattr(self._config, "pad_token_id", None):
# TODO: how to do that better?
self._config.pad_token_id = 0
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}})
if self.use_past:
# BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344
self.fill_with_past_key_values_(common_inputs, direction="inputs", inverted_values_shape=True)
common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"}
else:
common_inputs["attention_mask"] = {0: "batch", 1: "sequence"}
return common_inputs
@property
def num_layers(self) -> int:
return self._config.n_layer
@property
def num_attention_heads(self) -> int:
return self._config.n_head
@property
def atol_for_validation(self) -> float:
return 1e-3
def generate_dummy_inputs(
self,
tokenizer: "PreTrainedTokenizer",
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional["TensorType"] = None,
) -> Mapping[str, Any]:
common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
)
# We need to order the input in the way they appears in the forward()
ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]})
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
else:
import torch
batch, seqlen = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
past_key_values_length = seqlen + 2
head_dim = self._config.hidden_size // self.num_attention_heads
past_key_shape = (
batch * self.num_attention_heads,
head_dim,
past_key_values_length,
)
past_value_shape = (
batch * self.num_attention_heads,
past_key_values_length,
head_dim,
)
ordered_inputs["past_key_values"] = [
(torch.zeros(past_key_shape), torch.zeros(past_value_shape)) for _ in range(self.num_layers)
]
ordered_inputs["attention_mask"] = common_inputs["attention_mask"]
if self.use_past:
mask_dtype = ordered_inputs["attention_mask"].dtype
ordered_inputs["attention_mask"] = torch.cat(
[ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
)
return ordered_inputs
@property
def default_onnx_opset(self) -> int:
return 13

View File

@ -0,0 +1,255 @@
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert BigScience BLOOM checkpoint."""
import argparse
import json
import os
import re
import torch
from transformers import BloomConfig, BloomModel
from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME
from transformers.utils import logging
logging.set_verbosity_info()
WEIGHTS_TO_AVERAGE_ENDSWITH = [
"word_embeddings_layernorm.weight",
"word_embeddings_layernorm.bias",
"input_layernorm.weight",
"input_layernorm.bias",
"post_attention_layernorm.weight",
"post_attention_layernorm.bias",
"self_attention.dense.bias",
"mlp.dense_4h_to_h.bias",
"ln_f.weight",
"ln_f.bias",
]
WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN = [
"mlp.dense_4h_to_h.weight",
"self_attention.dense.weight",
]
def layer_name_mapping(key, file):
"""Convert Megatron-DeepSpeed TP/PP weights mapping in transformers PP only"""
# Handle first and last layers
layer_rename_map = {
"word_embeddings.weight": "word_embeddings.weight",
"word_embeddings.norm.weight": "word_embeddings_layernorm.weight",
"word_embeddings.norm.bias": "word_embeddings_layernorm.bias",
"weight": "ln_f.weight",
"bias": "ln_f.bias",
}
if key in layer_rename_map:
return layer_rename_map[key]
# Handle transformer blocks
layer_number = int(re.match(r".*layer_(\d*).*", file)[1])
layer_number -= 3
return f"h.{layer_number}." + key
def get_dtype_size(dtype):
if dtype == torch.bool:
return 1 / 8
bit_search = re.search(r"[^\d](\d+)$", str(dtype))
if bit_search is None:
raise ValueError(f"`dtype` is not a valid dtype: {dtype}.")
bit_size = int(bit_search.groups()[0])
return bit_size // 8
def convert_bloom_checkpoint_to_pytorch(
bloom_checkpoint_path, bloom_config_file, pytorch_dump_folder_path, shard_model, pretraining_tp
):
# Construct model
if bloom_config_file == "":
config = BloomConfig()
else:
config = BloomConfig.from_json_file(bloom_config_file)
if shard_model:
file_names = os.listdir(bloom_checkpoint_path)
file_names = sorted(filter(lambda s: s.startswith("layer") and "model_00" in s, file_names))
index_dict = {"weight_map": {}, "metadata": {}}
total_size = 0
missing_keys = None
config = BloomConfig()
for j, file in enumerate(file_names):
print("Processing file: {}".format(file))
tensors = None
for i in range(pretraining_tp):
# load all TP files
f_name = file.replace("model_00", f"model_0{i}")
temp = torch.load(os.path.join(bloom_checkpoint_path, f_name), map_location="cpu")
# Rename keys in the transformers names
keys = list(temp.keys())
for key in keys:
temp[layer_name_mapping(key, file)] = temp.pop(key)
if tensors is None:
tensors = temp
else:
for key in tensors.keys():
if any(key.endswith(end) for end in WEIGHTS_TO_AVERAGE_ENDSWITH):
# We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425)
tensors[key] += temp[key]
else:
# Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel
cat_dim = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN) else 0
# We concatenate these weights accross TP ranks
tensors[key] = torch.cat([tensors[key], temp[key]], dim=cat_dim)
# Divide by the number of TP the weights we want to average
for key in tensors.keys():
if any(key.endswith(end) for end in WEIGHTS_TO_AVERAGE_ENDSWITH):
tensors[key] = tensors[key] / pretraining_tp
torch.save(
tensors,
os.path.join(
pytorch_dump_folder_path,
"pytorch_model_{}-of-{}.bin".format(str(j + 1).zfill(5), str(len(file_names)).zfill(5)),
),
)
for key in tensors.keys():
value = tensors[key]
total_size += value.numel() * get_dtype_size(value.dtype)
if key not in index_dict["weight_map"]:
index_dict["weight_map"][key] = "pytorch_model_{}-of-{}.bin".format(
str(j + 1).zfill(5), str(len(file_names)).zfill(5)
)
config = BloomConfig()
pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME
index_dict["metadata"]["total_size"] = total_size
with open(pytorch_config_dump_path, "w", encoding="utf-8") as f:
f.write(config.to_json_string())
with open(os.path.join(pytorch_dump_folder_path, WEIGHTS_NAME + ".index.json"), "w", encoding="utf-8") as f:
json_config = json.dumps(index_dict, indent=2, sort_keys=True) + "\n"
f.write(json_config)
else:
model = BloomModel(config)
file_names = os.listdir(bloom_checkpoint_path)
file_names = sorted(filter(lambda s: s.startswith("layer") and "model_00" in s, file_names))
missing_keys = None
for i, file in enumerate(file_names):
tensors = None
for i in range(pretraining_tp):
# load all TP files
f_name = file.replace("model_00", f"model_0{i}")
temp = torch.load(os.path.join(bloom_checkpoint_path, f_name), map_location="cpu")
# Rename keys in the transformers names
keys = list(temp.keys())
for key in keys:
temp[layer_name_mapping(key, file)] = temp.pop(key)
if tensors is None:
tensors = temp
else:
for key in tensors.keys():
# We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425)
if any(key.endswith(end) for end in WEIGHTS_TO_AVERAGE_ENDSWITH):
tensors[key] += temp[key]
else:
# Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel
cat_dim = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN) else 0
# We concatenate these weights accross TP ranks
tensors[key] = torch.cat([tensors[key], temp[key]], dim=cat_dim)
# Divide by the number of TP the weights we want to average
for key in tensors.keys():
if any(key.endswith(end) for end in WEIGHTS_TO_AVERAGE_ENDSWITH):
tensors[key] = tensors[key] / pretraining_tp
other_keys = model.load_state_dict(tensors, strict=False)
assert not other_keys.unexpected_keys, f"The keys {other_keys.unexpected_keys} are unexpected"
if missing_keys is None:
missing_keys = set(other_keys.missing_keys)
else:
missing_keys = missing_keys.intersection(set(other_keys.missing_keys))
assert not missing_keys, f"The keys {missing_keys} are missing"
# Save pytorch-model
os.makedirs(pytorch_dump_folder_path, exist_ok=True)
pytorch_weights_dump_path = pytorch_dump_folder_path + "/" + WEIGHTS_NAME
pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME
print(f"Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}")
if config.torch_dtype is not None:
model = model.to(config.torch_dtype)
torch.save(model.state_dict(), pytorch_weights_dump_path)
print(f"Save configuration file to {pytorch_config_dump_path}")
with open(pytorch_config_dump_path, "w", encoding="utf-8") as f:
f.write(config.to_json_string())
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--bloom_checkpoint_path",
default=None,
type=str,
required=True,
help="Path to the Megatron-LM checkpoint path.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--bloom_config_file",
default="",
type=str,
help=(
"An optional config json file corresponding to the pre-trained model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--shard_model",
action="store_true",
help="An optional setting to shard the output model \nThis enables sharding the converted checkpoint",
)
parser.add_argument(
"--pretraining_tp",
default=4,
type=int,
help="Pretraining TP rank that has been used when training the model in Megatron-LM \n",
)
args = parser.parse_args()
convert_bloom_checkpoint_to_pytorch(
args.bloom_checkpoint_path,
args.bloom_config_file,
args.pytorch_dump_folder_path,
args.shard_model,
args.pretraining_tp,
)

69
seqgpt/demo.py Normal file
View File

@ -0,0 +1,69 @@
# from modelscope.utils.constant import Tasks
# from modelscope.pipelines import pipeline
# prompt = "输入: 中国的首都在哪里\n输出: "
# # task可选值为 抽取、分类。text为需要分析的文本。labels为类型列表中文逗号分隔。
# inputs = {'task': '抽取', 'text': '杭州欢迎你。', 'labels': '地名'}
# # PROMPT_TEMPLATE保持不变
# PROMPT_TEMPLATE = '输入: {text}\n{task}: {labels}\n输出: '
# # prompt = PROMPT_TEMPLATE.format(**inputs)
# pipeline_ins = pipeline(task=Tasks.text_generation, model='damo/nlp_seqgpt-560m', model_revision = 'v1.0.1', run_kwargs={'gen_token': '[GEN]'})
# print(pipeline_ins(prompt))
import torch
import json
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.preprocessors import TextGenerationTransformersPreprocessor
from modelscope.utils.config import Config
from modelscope import snapshot_download
from transformers import AutoConfig
from modeling_bloom import BloomForCausalLM
from tokenization_bloom_fast import BloomTokenizerFast
seed = 4321
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
model_dir = snapshot_download("damo/nlp_seqgpt-560m")
config, kwargs = AutoConfig.from_pretrained(
model_dir,
return_unused_kwargs=True,
trust_remote_code=True,
code_revision=None,
_commit_hash=None,
)
tokenizer_config_file = "./tokenizer_config.json"
if tokenizer_config_file is not None:
with open(tokenizer_config_file, encoding="utf-8") as tokenizer_config_handle:
init_kwargs = json.load(tokenizer_config_handle)
init_kwargs.pop("tokenizer_class", None)
init_kwargs.pop("tokenizer_file", None)
saved_init_inputs = init_kwargs.pop("init_inputs", ())
init_inputs = saved_init_inputs
init_kwargs["vocab_file"] = None
init_kwargs["added_tokens_file"] = None
init_kwargs["special_tokens_map_file"] = "./special_tokens_map.json"
init_kwargs["tokenizer_file"] = "./tokenizer.json"
init_kwargs["name_or_path"] = model_dir
tokenizer = BloomTokenizerFast(*init_inputs, **init_kwargs)
model = BloomForCausalLM(config)
model = model.from_pretrained(model_dir).cuda().eval()
prompt = "输入: 中国的首都在哪里\n输出: "
prompt = "输入: 美国的首都在哪里\n输出: "
input_ids = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=1024)
input_ids = input_ids.input_ids.cuda()
outputs = model.generate(input_ids, num_beams=4, do_sample=False, max_new_tokens=256)
decoded_sentences = tokenizer.batch_decode(outputs, skip_special_tokens=True)
print(decoded_sentences[0])

View File

@ -0,0 +1,7 @@
{
"_from_model_config": true,
"bos_token_id": 1,
"eos_token_id": 2,
"pad_token_id": 3,
"transformers_version": "4.28.1"
}

1247
seqgpt/modeling_bloom.py Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,734 @@
# coding=utf-8
# Copyright 2023 HuggingFace Inc. Team and Bigscience Workshop. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Flax BLOOM model."""
import math
from functools import partial
from typing import Optional, Tuple
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen import combine_masks, dot_product_attention_weights, make_causal_mask
from flax.linen.activation import tanh
from flax.traverse_util import flatten_dict, unflatten_dict
from jax import lax
from ...modeling_flax_outputs import (
FlaxBaseModelOutput,
FlaxBaseModelOutputWithPastAndCrossAttentions,
FlaxCausalLMOutput,
)
from ...modeling_flax_utils import FlaxPreTrainedModel, append_call_sample_docstring
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_bloom import BloomConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "bigscience/bloom"
_CONFIG_FOR_DOC = "BloomConfig"
BLOOM_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a Flax Linen
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`BloomConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
`jax.numpy.bfloat16` (on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given `dtype`.
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
parameters.**
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
[`~FlaxPreTrainedModel.to_bf16`].
"""
BLOOM_INPUTS_DOCSTRING = r"""
Args:
input_ids (`numpy.ndarray` of shape `(batch_size, input_ids_length)`):
`input_ids_length` = `sequence_length`. Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`BloomTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
def build_alibi_tensor(attention_mask: jnp.ndarray, num_heads: int, dtype: Optional[jnp.dtype] = jnp.float32):
"""
Flax implementation of the BLOOM Alibi tensor. BLOOM Alibi tensor is not causal as the original paper mentions, it
relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value
`softmax(l+a) = softmax(l)`. Based on
https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742
Link to paper: https://arxiv.org/abs/2108.12409
Args:
attention_mask (`jnp.ndarray`):
Token-wise attention mask, this should be of shape `(batch_size, max_seq_len)`.
num_heads (`int`):
Number of attention heads.
dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`):
The data type (dtype) of the output tensor.
Returns: Alibi tensor of shape `(batch_size * num_heads, 1, max_seq_len)`.
"""
batch_size, seq_length = attention_mask.shape
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
base = jnp.array(2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), dtype=jnp.float32)
powers = jnp.arange(1, 1 + closest_power_of_2, dtype=jnp.float32)
slopes = jax.lax.pow(base, powers)
if closest_power_of_2 != num_heads:
extra_base = jnp.array(2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), dtype=jnp.float32)
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
extra_powers = jnp.arange(1, 1 + 2 * num_remaining_heads, 2, dtype=jnp.float32)
slopes = jnp.cat([slopes, jax.lax.pow(extra_base, extra_powers)], axis=0)
# Note: the Alibi tensor will added to the attention bias that will be applied to the query, key product of attention
# therefore, Alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
# => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
# so that the query_length dimension will then be broadcast correctly.
# This is more or less identical to T5's relative position bias:
# https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
arange_tensor = ((attention_mask.cumsum(axis=-1) - 1) * attention_mask)[:, None, :]
alibi = slopes[..., None] * arange_tensor
alibi = jnp.expand_dims(alibi, axis=2)
return jnp.asarray(alibi, dtype)
class FlaxBloomAttention(nn.Module):
config: BloomConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.hidden_size = self.config.hidden_size
self.num_heads = self.config.n_head
self.head_dim = self.hidden_size // self.num_heads
self.attention_softmax_in_fp32 = self.dtype is not jnp.float32
if self.head_dim * self.num_heads != self.hidden_size:
raise ValueError(
f"`hidden_size` must be divisible by `num_heads` (got `hidden_size`: {self.hidden_size} and "
f"`num_heads`: {self.num_heads})."
)
dense = partial(
nn.Dense,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.query_key_value = dense(self.hidden_size * 3)
self.dense = dense(self.hidden_size)
self.resid_dropout = nn.Dropout(rate=self.config.hidden_dropout)
def _split_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:-1] + (self.num_heads, self.head_dim * 3))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.hidden_size,))
@nn.compact
# Copied from transformers.models.gptj.modeling_flax_gptj.FlaxGPTJAttention._concatenate_to_cache
def _concatenate_to_cache(self, key, value, query, attention_mask):
"""
This function takes projected key, value states from a single input token and concatenates the states to cached
states from previous steps. This function is slighly adapted from the official Flax repository:
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
"""
# detect if we're initializing by absence of existing cache data.
is_initialized = self.has_variable("cache", "cached_key")
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
if is_initialized:
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
# update key, value caches with our new 1d spatial slices
cur_index = cache_index.value
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
key = lax.dynamic_update_slice(cached_key.value, key, indices)
value = lax.dynamic_update_slice(cached_value.value, value, indices)
cached_key.value = key
cached_value.value = value
num_updated_cache_vectors = query.shape[1]
cache_index.value = cache_index.value + num_updated_cache_vectors
# causal mask for cached decoder self-attention: our single query position should only attend to those key
# positions that have already been generated and cached, not the remaining zero elements.
pad_mask = jnp.broadcast_to(
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
)
attention_mask = combine_masks(pad_mask, attention_mask)
return key, value, attention_mask
def __call__(
self,
hidden_states,
residual,
alibi,
attention_mask=None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
):
batch_size, seq_length = hidden_states.shape[:2]
# proj q, k, v
fused_qkv = self.query_key_value(hidden_states)
fused_qkv = self._split_heads(fused_qkv)
query, key, value = jnp.split(fused_qkv, 3, axis=-1)
causal_attention_mask = make_causal_mask(attention_mask, dtype="bool")
# for fast decoding causal attention mask should be shifted
causal_attention_mask_shift = (
self.variables["cache"]["cache_index"] if self.has_variable("cache", "cached_key") else 0
)
# fast decoding for generate requires special attention_mask
if self.has_variable("cache", "cached_key"):
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
causal_attention_mask = jax.lax.dynamic_slice(
causal_attention_mask,
(0, 0, causal_attention_mask_shift, 0),
(1, 1, seq_length, max_decoder_length),
)
# broadcast causal attention mask & attention mask to fit for merge
causal_attention_mask = jnp.broadcast_to(
causal_attention_mask, (batch_size,) + causal_attention_mask.shape[1:]
)
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_attention_mask.shape)
attention_mask = combine_masks(attention_mask, causal_attention_mask)
dropout_rng = None
if not deterministic and self.config.attention_dropout > 0.0:
dropout_rng = self.make_rng("dropout")
# During fast autoregressive decoding, we feed one position at a time,
# and cache the keys and values step by step.
if self.has_variable("cache", "cached_key") or init_cache:
key, value, attention_mask = self._concatenate_to_cache(key, value, query, attention_mask)
# transform boolean mask into float mask
mask_value = jnp.finfo(self.dtype).min
attention_bias = lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, mask_value).astype(self.dtype),
)
attention_bias = attention_bias + alibi
# Cast in fp32 if the original dtype is different from fp32
attention_dtype = jnp.float32 if self.attention_softmax_in_fp32 else self.dtype
attn_weights = dot_product_attention_weights(
query,
key,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.config.attention_dropout,
deterministic=deterministic,
dtype=attention_dtype,
)
# Cast back in the original dtype if the native dtype is not fp32
if self.attention_softmax_in_fp32:
attn_weights = attn_weights.astype(self.dtype)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value)
attn_output = self._merge_heads(attn_output)
attn_output = self.dense(attn_output)
attn_output = self.resid_dropout(attn_output, deterministic=deterministic)
attn_output = attn_output + residual
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
return outputs
class BloomGELU(nn.Module):
def setup(self):
self.dtype = jnp.float32
def __call__(self, x):
return x * 0.5 * (1.0 + tanh(0.79788456 * x * (1 + 0.044715 * x * x)))
class FlaxBloomMLP(nn.Module):
config: BloomConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
hidden_size = self.config.hidden_size
kernel_init = jax.nn.initializers.normal(self.config.initializer_range)
self.dense_h_to_4h = nn.Dense(4 * hidden_size, dtype=self.dtype, kernel_init=kernel_init)
self.dense_4h_to_h = nn.Dense(hidden_size, dtype=self.dtype, kernel_init=kernel_init)
self.hidden_dropout = nn.Dropout(self.config.hidden_dropout)
self.act = BloomGELU()
def __call__(self, hidden_states, residual, deterministic: bool = True):
hidden_states = self.dense_h_to_4h(hidden_states)
hidden_states = self.act(hidden_states)
intermediate_output = self.dense_4h_to_h(hidden_states)
intermediate_output = intermediate_output + residual
hidden_states = self.hidden_dropout(intermediate_output, deterministic=deterministic)
return hidden_states
class FlaxBloomBlock(nn.Module):
config: BloomConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.input_layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
self.self_attention = FlaxBloomAttention(self.config, dtype=self.dtype)
self.post_attention_layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
self.mlp = FlaxBloomMLP(self.config, dtype=self.dtype)
self.apply_residual_connection_post_layernorm = self.config.apply_residual_connection_post_layernorm
self.hidden_dropout = self.config.hidden_dropout
def __call__(
self,
hidden_states,
alibi,
attention_mask=None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
):
layernorm_output = self.input_layernorm(hidden_states)
# layer norm before saving residual if config calls for it
if self.apply_residual_connection_post_layernorm:
residual = layernorm_output
else:
residual = hidden_states
# self-attention
attn_outputs = self.self_attention(
layernorm_output,
residual=residual,
alibi=alibi,
attention_mask=attention_mask,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
)
attention_output = attn_outputs[0]
outputs = attn_outputs[1:]
post_layernorm = self.post_attention_layernorm(attention_output)
# set residual based on config
if self.apply_residual_connection_post_layernorm:
residual = post_layernorm
else:
residual = attention_output
output = self.mlp(post_layernorm, residual, deterministic=deterministic)
outputs = (output,) + outputs
return outputs
class FlaxBloomPreTrainedModel(FlaxPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = BloomConfig
base_model_prefix = "transformer"
module_class: nn.Module = None
def __init__(
self,
config: BloomConfig,
input_shape: Tuple = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
attention_mask = jnp.ones_like(input_ids)
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
random_params = self.module.init(rngs, input_ids, attention_mask, return_dict=False)["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
def init_cache(self, batch_size, max_length):
r"""
Args:
batch_size (`int`):
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
max_length (`int`):
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
cache.
"""
# init input variables to retrieve cache
input_ids = jnp.ones((batch_size, max_length), dtype="i4")
attention_mask = jnp.ones_like(input_ids)
init_variables = self.module.init(
jax.random.PRNGKey(0), input_ids, attention_mask, return_dict=False, init_cache=True
)
return unfreeze(init_variables["cache"])
@add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING)
def __call__(
self,
input_ids,
attention_mask=None,
past_key_values: dict = None,
params: dict = None,
dropout_rng: jax.random.PRNGKey = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, sequence_length = input_ids.shape
if attention_mask is None:
attention_mask = jnp.ones((batch_size, sequence_length))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
# If past_key_values are passed then cache is already initialized a private flag init_cache has to be passed
# down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be
# changed by FlaxBloomAttention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
outputs = self.module.apply(
inputs,
jnp.array(input_ids, dtype="i4"),
jnp.array(attention_mask, dtype="i4"),
not train,
False,
output_attentions,
output_hidden_states,
return_dict,
rngs=rngs,
mutable=mutable,
)
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs, past_key_values = outputs
outputs["past_key_values"] = unfreeze(past_key_values["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs, past_key_values = outputs
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
return outputs
class FlaxBloomBlockCollection(nn.Module):
config: BloomConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.layers = [
FlaxBloomBlock(self.config, name=str(layer_number), dtype=self.dtype)
for layer_number in range(self.config.num_hidden_layers)
]
def __call__(
self,
hidden_states,
alibi,
attention_mask=None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
):
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for layer_number in range(self.config.num_hidden_layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = self.layers[layer_number](
hidden_states,
alibi=alibi,
attention_mask=attention_mask,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions += (layer_outputs[1],)
# this contains possible `None` values - `FlaxBloomModule` will filter them out
outputs = (hidden_states, all_hidden_states, all_attentions)
return outputs
class FlaxBloomModule(nn.Module):
config: BloomConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.embed_dim = self.config.hidden_size
# word embeddings (no positional embedding layer)
self.word_embeddings = nn.Embed(
self.config.vocab_size,
self.embed_dim,
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
dtype=self.dtype,
)
# post-embedding layernorm
self.word_embeddings_layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
# transformer layers
self.h = FlaxBloomBlockCollection(self.config, dtype=self.dtype)
# final layernorm
self.ln_f = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
def __call__(
self,
input_ids=None,
attention_mask=None,
deterministic=True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
inputs_embeds = self.word_embeddings(input_ids)
# do post-embedding layernorm
hidden_states = self.word_embeddings_layernorm(inputs_embeds)
# build alibi depending on `attention_mask`
alibi = build_alibi_tensor(attention_mask, self.config.n_head, dtype=hidden_states.dtype)
outputs = self.h(
hidden_states,
alibi=alibi,
attention_mask=attention_mask,
deterministic=deterministic,
init_cache=init_cache,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
)
hidden_states = outputs[0]
hidden_states = self.ln_f(hidden_states)
if output_hidden_states:
all_hidden_states = outputs[1] + (hidden_states,)
outputs = (hidden_states, all_hidden_states) + outputs[2:]
else:
outputs = (hidden_states,) + outputs[1:]
if not return_dict:
return tuple(v for v in [outputs[0], outputs[-1]] if v is not None)
return FlaxBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=outputs[1],
attentions=outputs[-1],
)
@add_start_docstrings(
"The bare Bloom Model transformer outputting raw hidden-states without any specific head on top.",
BLOOM_START_DOCSTRING,
)
# Copied from transformers.models.gpt_neo.modeling_flax_gpt_neo.FlaxGPTNeoModel with GPTNeo->Bloom
class FlaxBloomModel(FlaxBloomPreTrainedModel):
module_class = FlaxBloomModule
append_call_sample_docstring(FlaxBloomModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutput, _CONFIG_FOR_DOC)
class FlaxBloomForCausalLMModule(nn.Module):
config: BloomConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.transformer = FlaxBloomModule(self.config, dtype=self.dtype)
self.lm_head = nn.Dense(
self.config.vocab_size,
use_bias=False,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
def __call__(
self,
input_ids,
attention_mask,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_kernel = self.transformer.variables["params"]["word_embeddings"]["embedding"].T
lm_logits = self.lm_head.apply({"params": {"kernel": shared_kernel}}, hidden_states)
else:
lm_logits = self.lm_head(hidden_states)
if not return_dict:
return (lm_logits,) + outputs[1:]
return FlaxCausalLMOutput(logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
@add_start_docstrings(
"""
The Bloom Model transformer with a language modeling head on top (linear layer with weights tied to the input
embeddings).
""",
BLOOM_START_DOCSTRING,
)
class FlaxBloomForCausalLM(FlaxBloomPreTrainedModel):
module_class = FlaxBloomForCausalLMModule
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
# initializing the cache
batch_size, seq_length = input_ids.shape
past_key_values = self.init_cache(batch_size, max_length)
# Note that usually one would have to put 0's in the attention_mask for
# x > input_ids.shape[-1] and x < cache_length. But since Bloom uses a causal mask,
# those positions are masked anyway. Thus, we can create a single static attention_mask here,
# which is more efficient for compilation
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
if attention_mask is not None:
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
return {
"past_key_values": past_key_values,
"attention_mask": extended_attention_mask,
}
def update_inputs_for_generation(self, model_outputs, model_kwargs):
model_kwargs["past_key_values"] = model_outputs.past_key_values
return model_kwargs
append_call_sample_docstring(FlaxBloomForCausalLM, _CHECKPOINT_FOR_DOC, FlaxCausalLMOutput, _CONFIG_FOR_DOC)

View File

@ -0,0 +1,9 @@
{
"additional_special_tokens": [
"[GEN]"
],
"bos_token": "<s>",
"eos_token": "</s>",
"pad_token": "<pad>",
"unk_token": "<unk>"
}

View File

@ -0,0 +1,177 @@
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for Bloom."""
import pickle
from typing import Optional, Tuple
from transformers.tokenization_utils_base import BatchEncoding
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
from transformers.utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"tokenizer_file": "tokenizer.json"}
PRETRAINED_VOCAB_FILES_MAP = {
"tokenizer_file": {
"bigscience/tokenizer": "https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json",
"bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json",
"bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json",
"bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json",
"bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json",
"bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json",
"bigscience/bloom": "https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json",
},
}
class BloomTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "fast" Bloom tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
Byte-Pair-Encoding.
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
be encoded differently whether it is at the beginning of the sentence (without space) or not:
```python
>>> from transformers import BloomTokenizerFast
>>> tokenizer = BloomTokenizerFast.from_pretrained("bigscience/bloom")
>>> tokenizer("Hello world")["input_ids"]
[59414, 8876]
>>> tokenizer(" Hello world")["input_ids"]
[86153, 8876]
```
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since
the model was not pretrained this way, it might yield a decrease in performance.
<Tip>
When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`.
</Tip>
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
merges_file (`str`):
Path to the merges file.
errors (`str`, *optional*, defaults to `"replace"`):
Paradigm to follow when decoding bytes to UTF-8. See
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
unk_token (`str`, *optional*, defaults to `<|endoftext|>`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str`, *optional*, defaults to `<|endoftext|>`):
The beginning of sequence token.
eos_token (`str`, *optional*, defaults to `<|endoftext|>`):
The end of sequence token.
add_prefix_space (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word. (Bloom tokenizer detect beginning of words by the preceding space).
trim_offsets (`bool`, *optional*, defaults to `True`):
Whether or not the post-processing step should trim offsets to avoid including whitespaces.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
model_input_names = ["input_ids", "attention_mask"]
slow_tokenizer_class = None
# No `max_model_input_sizes` as BLOOM uses ALiBi positional embeddings
def __init__(
self,
vocab_file=None,
merges_file=None,
tokenizer_file=None,
unk_token="<unk>",
bos_token="<s>",
eos_token="</s>",
pad_token="<pad>",
add_prefix_space=False,
clean_up_tokenization_spaces=False,
**kwargs,
):
super().__init__(
vocab_file,
merges_file,
tokenizer_file=tokenizer_file,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
add_prefix_space=add_prefix_space,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
**kwargs,
)
# TODO @ArthurZucker this can only work one way for now, to update later-on. Tests should also properly
# check this as they were green before.
pre_tok_state = pickle.dumps(self.backend_tokenizer.pre_tokenizer)
decoder_state = pickle.dumps(self.backend_tokenizer.decoder)
if add_prefix_space:
pre_tok_state = pre_tok_state.replace(b'"add_prefix_space":false', b'"add_prefix_space": true')
decoder_state = decoder_state.replace(b'"add_prefix_space":false', b'"add_prefix_space": true')
self.backend_tokenizer.pre_tokenizer = pickle.loads(pre_tok_state)
self.backend_tokenizer.decoder = pickle.loads(decoder_state)
self.add_prefix_space = add_prefix_space
def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding:
is_split_into_words = kwargs.get("is_split_into_words", False)
if not (self.add_prefix_space or not is_split_into_words):
raise Exception(
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with"
" pretokenized inputs."
)
return super()._batch_encode_plus(*args, **kwargs)
def _encode_plus(self, *args, **kwargs) -> BatchEncoding:
is_split_into_words = kwargs.get("is_split_into_words", False)
if not (self.add_prefix_space or not is_split_into_words):
raise Exception(
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with"
" pretokenized inputs."
)
return super()._encode_plus(*args, **kwargs)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files)
@property
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.default_chat_template
def default_chat_template(self):
"""
A simple chat template that ignores role information and just concatenates messages with EOS tokens.
"""
logger.warning_once(
"\nNo chat template is defined for this tokenizer - using the default template "
f"for the {self.__class__.__name__} class. If the default is not appropriate for "
"your model, please set `tokenizer.chat_template` to an appropriate template. "
"See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n"
)
return "{% for message in messages %}" "{{ message.content }}{{ eos_token }}" "{% endfor %}"

501215
seqgpt/tokenizer.json Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,11 @@
{
"add_prefix_space": false,
"bos_token": "<s>",
"clean_up_tokenization_spaces": false,
"eos_token": "</s>",
"model_max_length": 1000000000000000019884624838656,
"pad_token": "<pad>",
"padding_side": "left",
"tokenizer_class": "BloomTokenizer",
"unk_token": "<unk>"
}

BIN
seqgpt/training_args.bin Normal file

Binary file not shown.