Add custom dataset support.
This commit is contained in:
parent
e5f97af291
commit
1ef3e419cb
|
@ -6,7 +6,7 @@ from typing import Dict, Tuple
|
|||
import datasets
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from torch.utils.data import ConcatDataset, DataLoader
|
||||
from torch.utils.data import ConcatDataset, DataLoader, Dataset
|
||||
from transformers import (
|
||||
BatchEncoding,
|
||||
DefaultDataCollator,
|
||||
|
@ -22,9 +22,9 @@ learning_rate = 0.0001
|
|||
use_tril_attention_mask = None
|
||||
precision = "16-mixed" # "precision:bf16-mixed,16-mixed,32-true"
|
||||
tokenizer_name_or_path = None
|
||||
dataset_name = "/home/colin/develop/dataset/liwu/MNBVC/wiki/20230197/0.jsonl.gz"
|
||||
dataset_name = "/home/colin/develop/dataset/liwu/MNBVC/wiki"
|
||||
train_batch_size = 8
|
||||
dataset_name = ["/home/colin/develop/dataset/liwu/MNBVC/wiki"]
|
||||
dataset_name = ["/home/colin/develop/dataset/liwu/MNBVC/wiki/20230198/58.jsonl.gz"]
|
||||
train_batch_size = 1
|
||||
val_batch_size = 1
|
||||
accumulate_grad_batches = 32
|
||||
num_proc = 8
|
||||
|
@ -34,6 +34,22 @@ resume_from_ckpt_path = None
|
|||
seed = 42
|
||||
|
||||
|
||||
class SpecialDataset(Dataset):
|
||||
def __init__(self, size=4096):
|
||||
self.size = size
|
||||
self.features = []
|
||||
|
||||
def __len__(self):
|
||||
return self.size
|
||||
|
||||
def __getitem__(self, idx):
|
||||
output = {}
|
||||
output["input_ids"] = torch.randint(0, 4096, [128])
|
||||
output["labels"] = output["input_ids"]
|
||||
output["token_type_ids"] = torch.zeros([128])
|
||||
return output
|
||||
|
||||
|
||||
def split_raw_dataset(
|
||||
raw_dataset: datasets.DatasetDict,
|
||||
) -> Tuple[datasets.Dataset, datasets.Dataset]:
|
||||
|
@ -106,17 +122,17 @@ if __name__ == "__main__":
|
|||
model_dir = snapshot_download(model_name)
|
||||
lit_module = LitModule(model_dir, learning_rate, use_tril_attention_mask)
|
||||
|
||||
# datasets
|
||||
# tokenizer = load_tokenizer("./custom_models/gpt2")
|
||||
tokenizer = QWenTokenizer("./wit_b64.tiktoken", "./wit_char.tiktoken")
|
||||
train_dataset_list = []
|
||||
val_dataset_list = []
|
||||
for dataset_name in dataset_name:
|
||||
dataset_args = dataset_name.split(":")
|
||||
raw_dataset = datasets.load_dataset(
|
||||
"json", data_files="/home/colin/develop/dataset/liwu/MNBVC/wiki/20230197/0.jsonl.gz"
|
||||
)
|
||||
# raw_dataset = datasets.load_dataset(*dataset_args)
|
||||
for dn in dataset_name:
|
||||
datanames = dn.split(".")
|
||||
if datanames[-1] == "gz" and datanames[-2] == "jsonl":
|
||||
raw_dataset = datasets.load_dataset("json", data_files=dn)
|
||||
elif datanames[-1] == "json":
|
||||
raw_dataset = datasets.load_dataset("json", data_files=dn)
|
||||
else:
|
||||
raw_dataset = datasets.load_dataset(dn)
|
||||
train_dataset, val_dataset = split_raw_dataset(raw_dataset)
|
||||
train_dataset = process_dataset(train_dataset, tokenizer)
|
||||
val_dataset = process_dataset(val_dataset, tokenizer)
|
||||
|
@ -125,6 +141,9 @@ if __name__ == "__main__":
|
|||
train_dataset = ConcatDataset(train_dataset_list)
|
||||
val_dataset = ConcatDataset(val_dataset_list)
|
||||
|
||||
train_dataset = SpecialDataset()
|
||||
val_dataset = SpecialDataset()
|
||||
|
||||
# dataloaders
|
||||
train_dataloader = DataLoader(
|
||||
train_dataset,
|
||||
|
|
Loading…
Reference in New Issue