Add rwkv v7 demo.
This commit is contained in:
parent
e3b63f4635
commit
3eea09d78c
|
@ -0,0 +1,55 @@
|
|||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
#include "ATen/ATen.h"
|
||||
|
||||
typedef at::Half bf16;
|
||||
// typedef at::BFloat16 bf16;
|
||||
|
||||
template <typename F>
|
||||
__global__ void kernel_forward(const int B, const int T, const int C, const int H,
|
||||
const F *__restrict__ const _r, const F *__restrict__ const _w, const F *__restrict__ const _k, const F *__restrict__ const _v, const F *__restrict__ const _a, const F *__restrict__ const _b,
|
||||
F *__restrict__ const _y)
|
||||
{
|
||||
const int e = blockIdx.x / H;
|
||||
const int h = blockIdx.x % H;
|
||||
const int i = threadIdx.x;
|
||||
|
||||
float state[_N_] = {0};
|
||||
__shared__ float r[_N_], k[_N_], w[_N_], a[_N_], b[_N_];
|
||||
|
||||
for (int _t = 0; _t < T; _t++)
|
||||
{
|
||||
const int t = e*T*C + h*_N_ + i + _t * C;
|
||||
__syncthreads();
|
||||
r[i] = float(_r[t]);
|
||||
w[i] = __expf(-__expf(float(_w[t])));
|
||||
k[i] = float(_k[t]);
|
||||
a[i] = float(_a[t]);
|
||||
b[i] = float(_b[t]);
|
||||
__syncthreads();
|
||||
|
||||
float sa = 0;
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j++)
|
||||
{
|
||||
sa += a[j] * state[j];
|
||||
}
|
||||
|
||||
float vv = float(_v[t]);
|
||||
float y = 0;
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j++)
|
||||
{
|
||||
float& s = state[j];
|
||||
s = s * w[j] + k[j] * vv + sa * b[j];
|
||||
y += s * r[j];
|
||||
}
|
||||
_y[t] = F(y);
|
||||
}
|
||||
}
|
||||
|
||||
void cuda_forward(int B, int T, int C, int H, bf16 *r, bf16* w, bf16 *k, bf16 *v, bf16 *a, bf16 *b, bf16 *y)
|
||||
{
|
||||
assert(H*_N_ == C);
|
||||
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, w, k, v, a, b, y);
|
||||
}
|
|
@ -0,0 +1,15 @@
|
|||
#include <torch/extension.h>
|
||||
#include "ATen/ATen.h"
|
||||
|
||||
typedef at::Half bf16;
|
||||
// typedef at::BFloat16 bf16;
|
||||
|
||||
void cuda_forward(int B, int T, int C, int H, bf16 *r, bf16 *w, bf16 *k, bf16 *v, bf16 *a, bf16 *b, bf16 *y);
|
||||
|
||||
void forward(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &r, torch::Tensor &w, torch::Tensor &k, torch::Tensor &v, torch::Tensor &a, torch::Tensor &b, torch::Tensor &y) {
|
||||
cuda_forward(B, T, C, H, r.data_ptr<bf16>(), w.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), a.data_ptr<bf16>(), b.data_ptr<bf16>(), y.data_ptr<bf16>());
|
||||
}
|
||||
|
||||
TORCH_LIBRARY(wkv7, m) {
|
||||
m.def("forward", forward);
|
||||
}
|
|
@ -0,0 +1,64 @@
|
|||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
#include "ATen/ATen.h"
|
||||
|
||||
typedef at::Half bf16;
|
||||
// typedef at::BFloat16 bf16;
|
||||
|
||||
template <typename F>
|
||||
__global__ void kernel_forward(const int B, const int T, const int C, const int H,
|
||||
float *__restrict__ _state, const F *__restrict__ const _r, const F *__restrict__ const _w, const F *__restrict__ const _k, const F *__restrict__ const _v, const F *__restrict__ const _a, const F *__restrict__ const _b,
|
||||
F *__restrict__ const _y)
|
||||
{
|
||||
const int e = blockIdx.x / H;
|
||||
const int h = blockIdx.x % H;
|
||||
const int i = threadIdx.x;
|
||||
_state += h*_N_*_N_ + i*_N_; // wrong if B > 1 !!!
|
||||
|
||||
float state[_N_];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j++)
|
||||
state[j] = _state[j];
|
||||
|
||||
__shared__ float r[_N_], k[_N_], w[_N_], a[_N_], b[_N_];
|
||||
|
||||
for (int _t = 0; _t < T; _t++)
|
||||
{
|
||||
const int t = e*T*C + h*_N_ + i + _t * C;
|
||||
__syncthreads();
|
||||
r[i] = float(_r[t]);
|
||||
w[i] = __expf(-__expf(float(_w[t])));
|
||||
k[i] = float(_k[t]);
|
||||
a[i] = float(_a[t]);
|
||||
b[i] = float(_b[t]);
|
||||
__syncthreads();
|
||||
|
||||
float sa = 0;
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j++)
|
||||
{
|
||||
sa += a[j] * state[j];
|
||||
}
|
||||
|
||||
float vv = float(_v[t]);
|
||||
float y = 0;
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j++)
|
||||
{
|
||||
float& s = state[j];
|
||||
s = s * w[j] + k[j] * vv + sa * b[j];
|
||||
y += s * r[j];
|
||||
}
|
||||
_y[t] = F(y);
|
||||
}
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j++)
|
||||
_state[j] = state[j];
|
||||
}
|
||||
|
||||
void cuda_forward(int B, int T, int C, int H, float *state, bf16 *r, bf16* w, bf16 *k, bf16 *v, bf16 *a, bf16 *b, bf16 *y)
|
||||
{
|
||||
assert(H*_N_ == C);
|
||||
assert(B == 1); // only for B=1
|
||||
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, state, r, w, k, v, a, b, y);
|
||||
}
|
|
@ -0,0 +1,15 @@
|
|||
#include <torch/extension.h>
|
||||
#include "ATen/ATen.h"
|
||||
|
||||
typedef at::Half bf16;
|
||||
// typedef at::BFloat16 bf16;
|
||||
|
||||
void cuda_forward(int B, int T, int C, int H, float *state, bf16 *r, bf16 *w, bf16 *k, bf16 *v, bf16 *a, bf16 *b, bf16 *y);
|
||||
|
||||
void forward(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &state, torch::Tensor &r, torch::Tensor &w, torch::Tensor &k, torch::Tensor &v, torch::Tensor &a, torch::Tensor &b, torch::Tensor &y) {
|
||||
cuda_forward(B, T, C, H, state.data_ptr<float>(), r.data_ptr<bf16>(), w.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), a.data_ptr<bf16>(), b.data_ptr<bf16>(), y.data_ptr<bf16>());
|
||||
}
|
||||
|
||||
TORCH_LIBRARY(wkv7s, m) {
|
||||
m.def("forward", forward);
|
||||
}
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,436 @@
|
|||
########################################################################################################
|
||||
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
|
||||
########################################################################################################
|
||||
|
||||
import torch, types, os, gc, math, json
|
||||
import numpy as np
|
||||
import torch.nn as nn
|
||||
from torch.nn import functional as F
|
||||
np.set_printoptions(precision=4, suppress=True, linewidth=200)
|
||||
torch.backends.cudnn.benchmark = True
|
||||
torch.backends.cudnn.allow_tf32 = True
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
# torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = True
|
||||
# torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = True
|
||||
torch._C._jit_set_autocast_mode(False)
|
||||
|
||||
'''
|
||||
This will load RWKV-7 "Goose" x070 and inference in GPT-mode (slower than RNN-mode for autoregressive generation)
|
||||
'''
|
||||
|
||||
args = types.SimpleNamespace()
|
||||
|
||||
# model download: https://huggingface.co/BlinkDL/rwkv-7-world
|
||||
|
||||
MODEL_PATH = "/home/colin/.cache/modelscope/hub/Blink_DL/rwkv-7-world/RWKV-x070-World-0.1B-v2.8-20241210-ctx4096.pth"
|
||||
|
||||
# for 0.1B
|
||||
args.n_layer = 12
|
||||
args.n_embd = 768
|
||||
D_DECAY_LORA = 64
|
||||
D_AAA_LORA = 64
|
||||
D_MV_LORA = 32
|
||||
D_GATE_LORA = 128
|
||||
|
||||
args.vocab_size = 65536
|
||||
|
||||
# DTYPE = torch.bfloat16
|
||||
DTYPE = torch.half # better
|
||||
|
||||
args.head_size_a = 64 # don't change
|
||||
HEAD_SIZE = args.head_size_a
|
||||
|
||||
USE_CUDA_KERNEL = True # False => UNOPTIMIZED, VERY SLOW
|
||||
|
||||
MyModule = torch.jit.ScriptModule
|
||||
MyFunction = torch.jit.script_method
|
||||
MyStatic = torch.jit.script
|
||||
|
||||
########################################################################################################
|
||||
# RWKV Tokenizer (slow version)
|
||||
########################################################################################################
|
||||
|
||||
class RWKV_TOKENIZER():
|
||||
table: list[list[list[bytes]]]
|
||||
good: list[set[int]]
|
||||
wlen: list[int]
|
||||
def __init__(self, file_name):
|
||||
self.idx2token = {}
|
||||
sorted = [] # must be already sorted
|
||||
lines = open(file_name, "r", encoding="utf-8").readlines()
|
||||
for l in lines:
|
||||
idx = int(l[:l.index(' ')])
|
||||
x = eval(l[l.index(' '):l.rindex(' ')])
|
||||
x = x.encode("utf-8") if isinstance(x, str) else x
|
||||
assert isinstance(x, bytes)
|
||||
assert len(x) == int(l[l.rindex(' '):])
|
||||
sorted += [x]
|
||||
self.idx2token[idx] = x
|
||||
|
||||
self.token2idx = {}
|
||||
for k, v in self.idx2token.items():
|
||||
self.token2idx[v] = int(k)
|
||||
|
||||
# precompute some tables for fast matching
|
||||
self.table = [[[] for j in range(256)] for i in range(256)]
|
||||
self.good = [set() for i in range(256)]
|
||||
self.wlen = [0 for i in range(256)]
|
||||
|
||||
for i in reversed(range(len(sorted))): # reverse order - match longer tokens first
|
||||
s = sorted[i]
|
||||
if len(s) >= 2:
|
||||
s0 = int(s[0])
|
||||
s1 = int(s[1])
|
||||
self.table[s0][s1] += [s]
|
||||
self.wlen[s0] = max(self.wlen[s0], len(s))
|
||||
self.good[s0].add(s1)
|
||||
|
||||
def encodeBytes(self, src: bytes) -> list[int]:
|
||||
src_len: int = len(src)
|
||||
tokens: list[int] = []
|
||||
i: int = 0
|
||||
while i < src_len:
|
||||
s: bytes = src[i : i + 1]
|
||||
|
||||
if i < src_len - 1:
|
||||
s1: int = int(src[i + 1])
|
||||
s0: int = int(src[i])
|
||||
if s1 in self.good[s0]:
|
||||
sss: bytes = src[i : i + self.wlen[s0]]
|
||||
try:
|
||||
s = next(filter(sss.startswith, self.table[s0][s1]))
|
||||
except:
|
||||
pass
|
||||
tokens.append(self.token2idx[s])
|
||||
i += len(s)
|
||||
|
||||
return tokens
|
||||
|
||||
def decodeBytes(self, tokens):
|
||||
return b''.join(map(lambda i: self.idx2token[i], tokens))
|
||||
|
||||
def encode(self, src: str):
|
||||
return self.encodeBytes(src.encode("utf-8"))
|
||||
|
||||
def decode(self, tokens):
|
||||
return self.decodeBytes(tokens).decode('utf-8')
|
||||
|
||||
def printTokens(self, tokens):
|
||||
for i in tokens:
|
||||
s = self.idx2token[i]
|
||||
try:
|
||||
s = s.decode('utf-8')
|
||||
except:
|
||||
pass
|
||||
print(f'{repr(s)}{i}', end=' ')
|
||||
# print(repr(s), i)
|
||||
print()
|
||||
|
||||
tokenizer = RWKV_TOKENIZER("rwkv_vocab_v20230424.txt")
|
||||
|
||||
########################################################################################################
|
||||
# CUDA Kernel
|
||||
########################################################################################################
|
||||
|
||||
if USE_CUDA_KERNEL:
|
||||
|
||||
from torch.utils.cpp_extension import load
|
||||
|
||||
load(name="wkv7", sources=["cuda/wkv7_op.cpp", f"cuda/wkv7.cu"], is_python_module=False,
|
||||
verbose=True, extra_cuda_cflags=["-res-usage", "--use_fast_math", "-O3", "-Xptxas -O3", "--extra-device-vectorization", f"-D_N_={HEAD_SIZE}"])
|
||||
class WKV_7(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, r, w, k, v, a, b):
|
||||
with torch.no_grad():
|
||||
B, T, C = r.size()
|
||||
H = C // HEAD_SIZE
|
||||
N = HEAD_SIZE
|
||||
assert HEAD_SIZE == C // H
|
||||
assert r.dtype == DTYPE
|
||||
assert w.dtype == DTYPE
|
||||
assert k.dtype == DTYPE
|
||||
assert v.dtype == DTYPE
|
||||
assert a.dtype == DTYPE
|
||||
assert b.dtype == DTYPE
|
||||
assert r.is_contiguous()
|
||||
assert w.is_contiguous()
|
||||
assert k.is_contiguous()
|
||||
assert v.is_contiguous()
|
||||
assert a.is_contiguous()
|
||||
assert b.is_contiguous()
|
||||
y = torch.empty((B, T, C), device=k.device, dtype=DTYPE, memory_format=torch.contiguous_format)
|
||||
torch.ops.wkv7.forward(B, T, C, H, r, w, k, v, a, b, y)
|
||||
return y
|
||||
|
||||
def RWKV7_OP(r, w, k, v, a, b):
|
||||
return WKV_7.apply(r, w, k, v, a, b)
|
||||
|
||||
else:
|
||||
|
||||
def RWKV7_OP(r, w, k, v, a, b):
|
||||
B, T, C = r.size()
|
||||
H = C // HEAD_SIZE
|
||||
N = HEAD_SIZE
|
||||
r = r.view(B, T, H, N).float()
|
||||
k = k.view(B, T, H, N).float()
|
||||
v = v.view(B, T, H, N).float()
|
||||
a = a.view(B, T, H, N).float()
|
||||
b = b.view(B, T, H, N).float()
|
||||
w = torch.exp(-torch.exp(w.view(B, T, H, N).float()))
|
||||
out = torch.zeros((B, T, H, N), device=r.device, dtype=torch.float)
|
||||
state = torch.zeros((B, H, N, N), device=r.device, dtype=torch.float)
|
||||
|
||||
for t in range(T):
|
||||
kk = k[:, t, :].view(B, H, 1, N)
|
||||
rr = r[:, t, :].view(B, H, N, 1)
|
||||
vv = v[:, t, :].view(B, H, N, 1)
|
||||
aa = a[:, t, :].view(B, H, N, 1)
|
||||
bb = b[:, t, :].view(B, H, 1, N)
|
||||
state = state * w[: , t, :, None, :] + state @ aa @ bb + vv @ kk
|
||||
out[:, t, :] = (state @ rr).view(B, H, N)
|
||||
|
||||
# another method using einsum
|
||||
#
|
||||
# kk = k[:, t, :]
|
||||
# rr = r[:, t, :]
|
||||
# vv = v[:, t, :]
|
||||
# aa = a[:, t, :]
|
||||
# bb = b[:, t, :]
|
||||
# sab = torch.einsum('bhik,bhk,bhj->bhij', state, aa, bb)
|
||||
# state = state * w[: , t, :, None, :] + sab + torch.einsum('bhj,bhi->bhij', kk, vv)
|
||||
# out[:, t, :] = torch.einsum('bhj,bhij->bhi', rr, state)
|
||||
|
||||
return out.view(B, T, C).to(dtype=DTYPE)
|
||||
|
||||
########################################################################################################
|
||||
# RWKV TimeMix
|
||||
########################################################################################################
|
||||
|
||||
class RWKV_Tmix_x070(MyModule):
|
||||
def __init__(self, args, layer_id):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.layer_id = layer_id
|
||||
|
||||
self.head_size = args.head_size_a
|
||||
self.n_head = args.dim_att // self.head_size
|
||||
assert args.dim_att % self.n_head == 0
|
||||
|
||||
H = self.n_head
|
||||
N = self.head_size
|
||||
C = args.n_embd
|
||||
|
||||
self.x_r = nn.Parameter(torch.empty(1,1,C))
|
||||
self.x_w = nn.Parameter(torch.empty(1,1,C))
|
||||
self.x_k = nn.Parameter(torch.empty(1,1,C))
|
||||
self.x_v = nn.Parameter(torch.empty(1,1,C))
|
||||
self.x_a = nn.Parameter(torch.empty(1,1,C))
|
||||
self.x_g = nn.Parameter(torch.empty(1,1,C))
|
||||
|
||||
self.w0 = nn.Parameter(torch.empty(1,1,C))
|
||||
self.w1 = nn.Parameter(torch.empty(C, D_DECAY_LORA))
|
||||
self.w2 = nn.Parameter(torch.empty(D_DECAY_LORA, C))
|
||||
|
||||
self.a0 = nn.Parameter(torch.empty(1,1,C))
|
||||
self.a1 = nn.Parameter(torch.empty(C, D_AAA_LORA))
|
||||
self.a2 = nn.Parameter(torch.empty(D_AAA_LORA, C))
|
||||
|
||||
self.v0 = nn.Parameter(torch.empty(1,1,C))
|
||||
self.v1 = nn.Parameter(torch.empty(C, D_MV_LORA))
|
||||
self.v2 = nn.Parameter(torch.empty(D_MV_LORA, C))
|
||||
|
||||
self.g1 = nn.Parameter(torch.empty(C, D_GATE_LORA))
|
||||
self.g2 = nn.Parameter(torch.empty(D_GATE_LORA, C))
|
||||
|
||||
self.k_k = nn.Parameter(torch.empty(1,1,C))
|
||||
self.k_a = nn.Parameter(torch.empty(1,1,C))
|
||||
self.r_k = nn.Parameter(torch.empty(H,N))
|
||||
|
||||
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
||||
self.receptance = nn.Linear(C, C, bias=False)
|
||||
self.key = nn.Linear(C, C, bias=False)
|
||||
self.value = nn.Linear(C, C, bias=False)
|
||||
self.output = nn.Linear(C, C, bias=False)
|
||||
self.ln_x = nn.GroupNorm(H, C, eps=64e-5) # !!! notice eps value !!!
|
||||
|
||||
@MyFunction
|
||||
def forward(self, x, v_first):
|
||||
B, T, C = x.size()
|
||||
H = self.n_head
|
||||
xx = self.time_shift(x) - x
|
||||
|
||||
xr = x + xx * self.x_r
|
||||
xw = x + xx * self.x_w
|
||||
xk = x + xx * self.x_k
|
||||
xv = x + xx * self.x_v
|
||||
xa = x + xx * self.x_a
|
||||
xg = x + xx * self.x_g
|
||||
|
||||
r = self.receptance(xr)
|
||||
w = -F.softplus(-(self.w0 + torch.tanh(xw @ self.w1) @ self.w2)) - 0.5 # soft-clamp to (-inf, -0.5)
|
||||
k = self.key(xk)
|
||||
v = self.value(xv)
|
||||
if self.layer_id == 0:
|
||||
v_first = v # store the v of the first layer
|
||||
else:
|
||||
v = v + (v_first - v) * torch.sigmoid(self.v0 + (xv @ self.v1) @ self.v2) # add value residual
|
||||
a = torch.sigmoid(self.a0 + (xa @ self.a1) @ self.a2) # a is "in-context learning rate"
|
||||
g = torch.sigmoid(xg @ self.g1) @ self.g2
|
||||
|
||||
kk = k * self.k_k
|
||||
kk = F.normalize(kk.view(B,T,H,-1), dim=-1, p=2.0).view(B,T,C)
|
||||
k = k * (1 + (a-1) * self.k_a)
|
||||
|
||||
x = RWKV7_OP(r, w, k, v, -kk, kk*a)
|
||||
x = self.ln_x(x.view(B * T, C)).view(B, T, C)
|
||||
|
||||
x = x + ((r.view(B,T,H,-1)*k.view(B,T,H,-1)*self.r_k).sum(dim=-1, keepdim=True) * v.view(B,T,H,-1)).view(B,T,C)
|
||||
x = self.output(x * g)
|
||||
return x, v_first
|
||||
|
||||
########################################################################################################
|
||||
# RWKV ChannelMix
|
||||
########################################################################################################
|
||||
|
||||
class RWKV_CMix_x070(MyModule):
|
||||
def __init__(self, args, layer_id):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.layer_id = layer_id
|
||||
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
||||
|
||||
with torch.no_grad():
|
||||
self.x_k = nn.Parameter(torch.empty(1, 1, args.n_embd))
|
||||
|
||||
self.key = nn.Linear(args.n_embd, args.dim_ffn, bias=False)
|
||||
self.value = nn.Linear(args.dim_ffn, args.n_embd, bias=False)
|
||||
|
||||
@MyFunction
|
||||
def forward(self, x):
|
||||
xx = self.time_shift(x) - x
|
||||
|
||||
k = x + xx * self.x_k
|
||||
k = torch.relu(self.key(k)) ** 2
|
||||
return self.value(k)
|
||||
|
||||
########################################################################################################
|
||||
# RWKV Block
|
||||
########################################################################################################
|
||||
|
||||
class Block(MyModule):
|
||||
def __init__(self, args, layer_id):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.layer_id = layer_id
|
||||
|
||||
self.ln0 = nn.LayerNorm(args.n_embd) # only used in block 0, should be fused with emb
|
||||
self.ln1 = nn.LayerNorm(args.n_embd)
|
||||
self.ln2 = nn.LayerNorm(args.n_embd)
|
||||
|
||||
self.att = RWKV_Tmix_x070(args, layer_id)
|
||||
self.ffn = RWKV_CMix_x070(args, layer_id)
|
||||
|
||||
@MyFunction
|
||||
def forward(self, x, v_first):
|
||||
|
||||
if self.layer_id == 0:
|
||||
x = self.ln0(x)
|
||||
|
||||
xx, v_first = self.att(self.ln1(x), v_first)
|
||||
x = x + xx
|
||||
x = x + self.ffn(self.ln2(x))
|
||||
|
||||
return x, v_first
|
||||
|
||||
########################################################################################################
|
||||
# RWKV Model
|
||||
########################################################################################################
|
||||
|
||||
class RWKV(nn.Module):
|
||||
def __init__(self, args):
|
||||
super().__init__()
|
||||
args.dim_att = args.n_embd
|
||||
args.dim_ffn = args.n_embd * 4
|
||||
self.emb = nn.Embedding(args.vocab_size, args.n_embd)
|
||||
|
||||
self.blocks = nn.ModuleList([Block(args, i) for i in range(args.n_layer)])
|
||||
|
||||
self.ln_out = nn.LayerNorm(args.n_embd)
|
||||
self.head = nn.Linear(args.n_embd, args.vocab_size, bias=False)
|
||||
|
||||
def forward(self, idx):
|
||||
|
||||
x = self.emb(idx)
|
||||
|
||||
v_first = torch.empty_like(x)
|
||||
for block in self.blocks:
|
||||
x, v_first = block(x, v_first)
|
||||
|
||||
x = self.ln_out(x)
|
||||
x = self.head(x)
|
||||
|
||||
return x
|
||||
|
||||
########################################################################################################
|
||||
# RWKV Inference
|
||||
########################################################################################################
|
||||
|
||||
model_params = torch.load(MODEL_PATH, map_location="cpu")
|
||||
|
||||
with torch.no_grad():
|
||||
|
||||
model = RWKV(args).to(dtype=DTYPE).cuda()
|
||||
model.load_state_dict(model_params, strict=False) # we will ignore blocks.0.att.v0/v1/v2
|
||||
|
||||
########################################################################################################
|
||||
|
||||
prompt = "中国的首都是在"
|
||||
input = tokenizer.encode(prompt)
|
||||
print(f'\nInput:\n{input}')
|
||||
|
||||
out = model.forward(torch.tensor(input).reshape(1,-1).cuda())
|
||||
print(f'\nOutput:\n{out}')
|
||||
|
||||
# logits of the last token => prediction for the next token
|
||||
out = out[0, -1]
|
||||
|
||||
probs = F.softmax(out.float(), dim=-1) # compute softmax in float (more accurate)
|
||||
|
||||
print(f'\n{prompt}')
|
||||
|
||||
_, indices = torch.topk(probs, 10) # print top-10 possibilities
|
||||
for i in range(len(indices)):
|
||||
token_id = indices[i].item()
|
||||
token = tokenizer.decode([token_id])
|
||||
token_prob = probs[token_id].item()
|
||||
print(token, f'[probability {token_prob:.2%}]')
|
||||
|
||||
########################################################################################################
|
||||
|
||||
with open(f"misc/lambada_test.jsonl", "r", encoding="utf-8") as f:
|
||||
todo = [json.loads(line) for line in f]
|
||||
todo = [[doc['text'].rsplit(' ', 1)[0], " " + doc['text'].rsplit(' ', 1)[1]] for doc in todo]
|
||||
|
||||
print('\nCheck LAMBADA...')
|
||||
xsum = 0
|
||||
xcnt = 0
|
||||
xacc = 0
|
||||
for d in todo:
|
||||
src = [0] + tokenizer.encode(d[0])
|
||||
dst = tokenizer.encode(d[1])
|
||||
|
||||
logits = 0
|
||||
correct = True
|
||||
out = model.forward(torch.tensor(src+dst).reshape(1,-1).cuda())
|
||||
for i in range(len(dst)):
|
||||
ooo = out[0,len(src)-1+i].float()
|
||||
probs = F.softmax(ooo, dim=-1)
|
||||
logits += math.log(probs[dst[i]])
|
||||
if torch.argmax(probs).item() != dst[i]:
|
||||
correct = False
|
||||
|
||||
xcnt += 1
|
||||
xsum += logits
|
||||
xacc += 1 if correct else 0
|
||||
if xcnt % 100 == 0 or xcnt == len(todo):
|
||||
print(xcnt, 'ppl', round(math.exp(-xsum / xcnt), 2), 'acc', round(xacc/xcnt*100, 2))
|
File diff suppressed because it is too large
Load Diff
|
@ -11,6 +11,7 @@ if __name__ == "__main__":
|
|||
# checkpoint_path = "log/bigger/version_0/checkpoints/epoch=19-step=98720.ckpt"
|
||||
checkpoint_path = "log/bigger/version_1/checkpoints/epoch=14-step=74040.ckpt"
|
||||
checkpoint_path = "log/bigger/version_3/checkpoints/epoch=46-step=231992.ckpt"
|
||||
checkpoint_path = "log/bigger/version_8/checkpoints/epoch=49-step=246800.ckpt"
|
||||
|
||||
qwen = QwenModule.load_from_checkpoint(checkpoint_path=checkpoint_path)
|
||||
qwen.eval()
|
||||
|
|
Loading…
Reference in New Issue