Add mask when validation.
This commit is contained in:
		
							parent
							
								
									7434427ec9
								
							
						
					
					
						commit
						43e486aa1c
					
				| 
						 | 
				
			
			@ -63,11 +63,10 @@ class LitModule(pl.LightningModule):
 | 
			
		|||
        logits = logits.contiguous().view(-1, logits.size(-1))
 | 
			
		||||
        labels = batch["labels"][..., 1:]
 | 
			
		||||
        labels = labels.contiguous().view(-1)
 | 
			
		||||
        label_mask = labels < self.vocab_size
 | 
			
		||||
        label_mask = batch["mask"][..., 1:]
 | 
			
		||||
        label_mask = label_mask.contiguous().view(-1)
 | 
			
		||||
        logits_m = logits[label_mask]
 | 
			
		||||
        labels_m = labels[label_mask]
 | 
			
		||||
        # m = torch.max(logits, 1).indices.cpu().numpy()
 | 
			
		||||
        # ll = labels.cpu().numpy()
 | 
			
		||||
        self.metric_accuracy.update(logits_m, labels_m)
 | 
			
		||||
        self.metric_loss.update(loss)
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -241,6 +241,8 @@ class MeaningDataset(Dataset):
 | 
			
		|||
        map = MeaningMap(size=end, vocab_size=vocab_size, max_subitem=max_subitem, use_cache=use_cache)
 | 
			
		||||
        np.random.seed(seed)
 | 
			
		||||
 | 
			
		||||
        self.mask_level = None
 | 
			
		||||
        self.mask_idx = None
 | 
			
		||||
        self.tree = []
 | 
			
		||||
        self.seq = []
 | 
			
		||||
        self.level = []
 | 
			
		||||
| 
						 | 
				
			
			@ -277,6 +279,10 @@ class MeaningDataset(Dataset):
 | 
			
		|||
    def len(self):
 | 
			
		||||
        return len(self.seq)
 | 
			
		||||
 | 
			
		||||
    def set_mask(self, level=None, idx=None):
 | 
			
		||||
        self.mask_level = level
 | 
			
		||||
        self.mask_idx = idx
 | 
			
		||||
 | 
			
		||||
    def __getitem__(self, idx):
 | 
			
		||||
        output = {}
 | 
			
		||||
        data = torch.tensor(self.seq[idx]).long()
 | 
			
		||||
| 
						 | 
				
			
			@ -285,6 +291,10 @@ class MeaningDataset(Dataset):
 | 
			
		|||
        output["token_type_ids"] = torch.zeros(data.shape)
 | 
			
		||||
        output["tree"] = self.tree[idx]
 | 
			
		||||
        output["level"] = self.level[idx]
 | 
			
		||||
        if self.mask_level is not None and self.mask_idx is not None:
 | 
			
		||||
            output["mask"] = torch.tensor(self.get_seq_mask(idx, self.mask_level, self.mask_idx))
 | 
			
		||||
        else:
 | 
			
		||||
            output["mask"] = torch.ones(data.shape, dtype=torch.long)
 | 
			
		||||
        return output
 | 
			
		||||
 | 
			
		||||
    def get_batch(self, idx_list):  # must equal sequence length
 | 
			
		||||
| 
						 | 
				
			
			@ -296,6 +306,12 @@ class MeaningDataset(Dataset):
 | 
			
		|||
        output["token_type_ids"] = torch.zeros(data.shape)
 | 
			
		||||
        output["tree"] = [self.tree[i] for i in idx_list]
 | 
			
		||||
        output["level"] = [self.level[i] for i in idx_list]
 | 
			
		||||
        if self.mask_level is not None and self.mask_idx is not None:
 | 
			
		||||
            output["mask"] = torch.tensor(
 | 
			
		||||
                np.stack([self.get_seq_mask(i, self.mask_level, self.mask_idx) for i in idx_list], axis=0)
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            output["mask"] = torch.ones(data.shape, dtype=torch.long)
 | 
			
		||||
        return output
 | 
			
		||||
 | 
			
		||||
    def get_token(self, idx):  # must equal sequence length
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -34,9 +34,14 @@ hidden_size = 1024  # 128 1024 2048  32
 | 
			
		|||
num_attention_heads = 16  # 8 8 16
 | 
			
		||||
num_hidden_layers = 3  # 6 12 24  3
 | 
			
		||||
 | 
			
		||||
name = "vocab_ratio_level_data_hidden_head_layer"
 | 
			
		||||
mask_level = None
 | 
			
		||||
mask_idx = None
 | 
			
		||||
 | 
			
		||||
# name = "vocab_ratio_level_data_hidden_head_layer"
 | 
			
		||||
name = "rank"
 | 
			
		||||
ver = f"{vocab_size}" + "_" + f"{level_ratio}" + "_" + f"{level}" + "_" + f"{dataset_level}"
 | 
			
		||||
ver = ver + "_" + f"{hidden_size}" + "_" + f"{num_attention_heads}" + "_" + f"{num_hidden_layers}"
 | 
			
		||||
ver = ver + "_" + f"{mask_level}" + "_" + f"{mask_idx}"
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    torch.manual_seed(seed)
 | 
			
		||||
| 
						 | 
				
			
			@ -53,6 +58,7 @@ if __name__ == "__main__":
 | 
			
		|||
    start = vocab_size * (level_ratio**level)
 | 
			
		||||
    size = vocab_size * (level_ratio**dataset_level)
 | 
			
		||||
    raw_dataset = MeaningDataset(start, start + size, size, vocab_size, level_ratio)
 | 
			
		||||
    raw_dataset.set_mask(mask_level, mask_idx)
 | 
			
		||||
    train_dataset, val_dataset = raw_dataset.split(0.9)
 | 
			
		||||
    train_dataloader = BatchGroupMeaningDataloader(train_dataset, train_batch_size)
 | 
			
		||||
    val_dataloader = BatchGroupMeaningDataloader(val_dataset, val_batch_size)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue