Add mask when validation.
This commit is contained in:
parent
7434427ec9
commit
43e486aa1c
|
@ -63,11 +63,10 @@ class LitModule(pl.LightningModule):
|
|||
logits = logits.contiguous().view(-1, logits.size(-1))
|
||||
labels = batch["labels"][..., 1:]
|
||||
labels = labels.contiguous().view(-1)
|
||||
label_mask = labels < self.vocab_size
|
||||
label_mask = batch["mask"][..., 1:]
|
||||
label_mask = label_mask.contiguous().view(-1)
|
||||
logits_m = logits[label_mask]
|
||||
labels_m = labels[label_mask]
|
||||
# m = torch.max(logits, 1).indices.cpu().numpy()
|
||||
# ll = labels.cpu().numpy()
|
||||
self.metric_accuracy.update(logits_m, labels_m)
|
||||
self.metric_loss.update(loss)
|
||||
|
||||
|
|
|
@ -241,6 +241,8 @@ class MeaningDataset(Dataset):
|
|||
map = MeaningMap(size=end, vocab_size=vocab_size, max_subitem=max_subitem, use_cache=use_cache)
|
||||
np.random.seed(seed)
|
||||
|
||||
self.mask_level = None
|
||||
self.mask_idx = None
|
||||
self.tree = []
|
||||
self.seq = []
|
||||
self.level = []
|
||||
|
@ -277,6 +279,10 @@ class MeaningDataset(Dataset):
|
|||
def len(self):
|
||||
return len(self.seq)
|
||||
|
||||
def set_mask(self, level=None, idx=None):
|
||||
self.mask_level = level
|
||||
self.mask_idx = idx
|
||||
|
||||
def __getitem__(self, idx):
|
||||
output = {}
|
||||
data = torch.tensor(self.seq[idx]).long()
|
||||
|
@ -285,6 +291,10 @@ class MeaningDataset(Dataset):
|
|||
output["token_type_ids"] = torch.zeros(data.shape)
|
||||
output["tree"] = self.tree[idx]
|
||||
output["level"] = self.level[idx]
|
||||
if self.mask_level is not None and self.mask_idx is not None:
|
||||
output["mask"] = torch.tensor(self.get_seq_mask(idx, self.mask_level, self.mask_idx))
|
||||
else:
|
||||
output["mask"] = torch.ones(data.shape, dtype=torch.long)
|
||||
return output
|
||||
|
||||
def get_batch(self, idx_list): # must equal sequence length
|
||||
|
@ -296,6 +306,12 @@ class MeaningDataset(Dataset):
|
|||
output["token_type_ids"] = torch.zeros(data.shape)
|
||||
output["tree"] = [self.tree[i] for i in idx_list]
|
||||
output["level"] = [self.level[i] for i in idx_list]
|
||||
if self.mask_level is not None and self.mask_idx is not None:
|
||||
output["mask"] = torch.tensor(
|
||||
np.stack([self.get_seq_mask(i, self.mask_level, self.mask_idx) for i in idx_list], axis=0)
|
||||
)
|
||||
else:
|
||||
output["mask"] = torch.ones(data.shape, dtype=torch.long)
|
||||
return output
|
||||
|
||||
def get_token(self, idx): # must equal sequence length
|
||||
|
|
|
@ -34,9 +34,14 @@ hidden_size = 1024 # 128 1024 2048 32
|
|||
num_attention_heads = 16 # 8 8 16
|
||||
num_hidden_layers = 3 # 6 12 24 3
|
||||
|
||||
name = "vocab_ratio_level_data_hidden_head_layer"
|
||||
mask_level = None
|
||||
mask_idx = None
|
||||
|
||||
# name = "vocab_ratio_level_data_hidden_head_layer"
|
||||
name = "rank"
|
||||
ver = f"{vocab_size}" + "_" + f"{level_ratio}" + "_" + f"{level}" + "_" + f"{dataset_level}"
|
||||
ver = ver + "_" + f"{hidden_size}" + "_" + f"{num_attention_heads}" + "_" + f"{num_hidden_layers}"
|
||||
ver = ver + "_" + f"{mask_level}" + "_" + f"{mask_idx}"
|
||||
|
||||
if __name__ == "__main__":
|
||||
torch.manual_seed(seed)
|
||||
|
@ -53,6 +58,7 @@ if __name__ == "__main__":
|
|||
start = vocab_size * (level_ratio**level)
|
||||
size = vocab_size * (level_ratio**dataset_level)
|
||||
raw_dataset = MeaningDataset(start, start + size, size, vocab_size, level_ratio)
|
||||
raw_dataset.set_mask(mask_level, mask_idx)
|
||||
train_dataset, val_dataset = raw_dataset.split(0.9)
|
||||
train_dataloader = BatchGroupMeaningDataloader(train_dataset, train_batch_size)
|
||||
val_dataloader = BatchGroupMeaningDataloader(val_dataset, val_batch_size)
|
||||
|
|
Loading…
Reference in New Issue