Add dataset and wit.
This commit is contained in:
parent
b7c27af6c8
commit
9d5d590b09
|
@ -0,0 +1,5 @@
|
|||
from datasets import load_dataset
|
||||
|
||||
dataset = load_dataset("liwu/MNBVC", "wikipedia", split="train", streaming=True)
|
||||
|
||||
print(next(iter(dataset))) # get the first line
|
|
@ -0,0 +1,2 @@
|
|||
from qwen.modeling_qwen import QWenLMHeadModel
|
||||
from qwen.configuration_qwen import QWenConfig
|
|
@ -0,0 +1,45 @@
|
|||
# Copyright (c) Alibaba Cloud.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
|
||||
class QWenConfig:
|
||||
def __init__(self):
|
||||
self.vocab_size = 151936
|
||||
self.hidden_size = 2048
|
||||
self.num_hidden_layers = 24
|
||||
self.num_attention_heads = 16
|
||||
self.emb_dropout_prob = 0.0
|
||||
self.attn_dropout_prob = 0.0
|
||||
self.layer_norm_epsilon = 1e-6
|
||||
self.initializer_range = 0.02
|
||||
self.max_position_embeddings = 8192
|
||||
self.scale_attn_weights = True
|
||||
self.use_cache = True
|
||||
self.bf16 = False
|
||||
self.fp16 = False
|
||||
self.fp32 = False
|
||||
self.kv_channels = 128
|
||||
self.rotary_pct = 1.0
|
||||
self.rotary_emb_base = 10000
|
||||
self.use_dynamic_ntk = True
|
||||
self.use_logn_attn = True
|
||||
self.use_flash_attn = "auto"
|
||||
self.intermediate_size = 11008
|
||||
self.no_bias = True
|
||||
self.tie_word_embeddings = False
|
||||
self.use_cache_quantization = False
|
||||
self.use_cache_kernel = False
|
||||
self.softmax_in_fp32 = False
|
||||
|
||||
self.chat_format = "chatml"
|
||||
self.eos_token_id = 151643
|
||||
self.pad_token_id = 151643
|
||||
self.max_window_size = 6144
|
||||
self.max_new_tokens = 512
|
||||
self.do_sample = True
|
||||
self.top_k = 0
|
||||
self.top_p = 0.8
|
||||
self.repetition_penalty = 1.1
|
||||
self.model_max_length = 8192
|
|
@ -0,0 +1,31 @@
|
|||
import torch
|
||||
from modelscope import snapshot_download
|
||||
|
||||
from modeling_wit import QWenLMHeadModel
|
||||
from modeling_wit import QwenRunner
|
||||
from configuration_qwen import QWenConfig
|
||||
from tokenization_qwen import QWenTokenizer
|
||||
|
||||
seed = 4321
|
||||
torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed_all(seed)
|
||||
|
||||
model_dir = snapshot_download("qwen/Qwen-1_8B-Chat")
|
||||
# model_dir = "/home/colin/.cache/modelscope/hub/qwen/Qwen-1_8B-Chat"
|
||||
|
||||
config = QWenConfig()
|
||||
model = QWenLMHeadModel(config)
|
||||
|
||||
print(model)
|
||||
|
||||
tokenizer = QWenTokenizer("./qwen.tiktoken")
|
||||
model = model.from_pretrained(model_dir).cuda()
|
||||
|
||||
model = model.eval()
|
||||
# model = model.train() # control by @torch.no_grad()
|
||||
|
||||
|
||||
runner = QwenRunner(model)
|
||||
|
||||
response, history, decode_tokens = runner.Chat(tokenizer, "东南亚国家日本的首都是什么市", "")
|
||||
print(decode_tokens)
|
|
@ -0,0 +1,202 @@
|
|||
{
|
||||
"metadata": {
|
||||
"total_size": 3673657344
|
||||
},
|
||||
"weight_map": {
|
||||
"lm_head.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.0.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.0.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.0.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.0.ln_1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.0.ln_2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.0.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.0.mlp.w1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.0.mlp.w2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.1.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.1.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.1.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.1.ln_1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.1.ln_2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.1.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.1.mlp.w1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.1.mlp.w2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.10.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.10.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.10.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.10.ln_1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.10.ln_2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.10.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.10.mlp.w1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.10.mlp.w2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.11.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.11.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.11.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.11.ln_1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.11.ln_2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.11.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.11.mlp.w1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.11.mlp.w2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.12.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.12.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.12.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.12.ln_1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.12.ln_2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.12.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.12.mlp.w1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.12.mlp.w2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.13.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.13.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.13.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.13.ln_1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.13.ln_2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.13.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.13.mlp.w1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.13.mlp.w2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.14.attn.c_attn.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.14.attn.c_attn.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.14.attn.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.14.ln_1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.14.ln_2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.14.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.14.mlp.w1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.14.mlp.w2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.15.attn.c_attn.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.15.attn.c_attn.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.15.attn.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.15.ln_1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.15.ln_2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.15.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.15.mlp.w1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.15.mlp.w2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.16.attn.c_attn.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.16.attn.c_attn.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.16.attn.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.16.ln_1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.16.ln_2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.16.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.16.mlp.w1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.16.mlp.w2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.17.attn.c_attn.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.17.attn.c_attn.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.17.attn.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.17.ln_1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.17.ln_2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.17.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.17.mlp.w1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.17.mlp.w2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.18.attn.c_attn.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.18.attn.c_attn.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.18.attn.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.18.ln_1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.18.ln_2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.18.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.18.mlp.w1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.18.mlp.w2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.19.attn.c_attn.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.19.attn.c_attn.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.19.attn.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.19.ln_1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.19.ln_2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.19.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.19.mlp.w1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.19.mlp.w2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.2.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.2.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.2.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.2.ln_1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.2.ln_2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.2.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.2.mlp.w1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.2.mlp.w2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.20.attn.c_attn.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.20.attn.c_attn.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.20.attn.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.20.ln_1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.20.ln_2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.20.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.20.mlp.w1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.20.mlp.w2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.21.attn.c_attn.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.21.attn.c_attn.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.21.attn.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.21.ln_1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.21.ln_2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.21.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.21.mlp.w1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.21.mlp.w2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.22.attn.c_attn.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.22.attn.c_attn.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.22.attn.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.22.ln_1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.22.ln_2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.22.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.22.mlp.w1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.22.mlp.w2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.23.attn.c_attn.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.23.attn.c_attn.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.23.attn.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.23.ln_1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.23.ln_2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.23.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.23.mlp.w1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.23.mlp.w2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.3.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.3.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.3.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.3.ln_1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.3.ln_2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.3.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.3.mlp.w1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.3.mlp.w2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.4.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.4.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.4.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.4.ln_1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.4.ln_2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.4.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.4.mlp.w1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.4.mlp.w2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.5.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.5.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.5.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.5.ln_1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.5.ln_2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.5.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.5.mlp.w1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.5.mlp.w2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.6.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.6.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.6.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.6.ln_1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.6.ln_2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.6.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.6.mlp.w1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.6.mlp.w2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.7.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.7.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.7.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.7.ln_1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.7.ln_2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.7.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.7.mlp.w1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.7.mlp.w2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.8.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.8.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.8.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.8.ln_1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.8.ln_2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.8.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.8.mlp.w1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.8.mlp.w2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.9.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.9.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.9.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.9.ln_1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.9.ln_2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.9.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.9.mlp.w1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.9.mlp.w2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.ln_f.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.wte.weight": "model-00001-of-00002.safetensors"
|
||||
}
|
||||
}
|
|
@ -0,0 +1,389 @@
|
|||
import copy
|
||||
import math
|
||||
import os
|
||||
import sys
|
||||
import gc
|
||||
from tqdm import auto as tqdm_lib
|
||||
import json
|
||||
from typing import Optional, Tuple, Union, Callable, List, Any, Generator
|
||||
from einops import rearrange
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torch.utils.checkpoint
|
||||
from torch.nn import CrossEntropyLoss
|
||||
from torch import nn
|
||||
from safetensors.torch import load_file as safe_load_file
|
||||
from safetensors.torch import save_file as safe_save_file
|
||||
|
||||
from qwen_generation_utils import (
|
||||
make_context,
|
||||
decode_tokens,
|
||||
)
|
||||
|
||||
sys.path.append("..")
|
||||
from tools import show
|
||||
from tools import mem_tracker
|
||||
|
||||
# tracker = mem_tracker.MemTracker()
|
||||
# tracker.track()
|
||||
|
||||
|
||||
class RMSNorm(torch.nn.Module):
|
||||
def __init__(self, dim: int, eps: float = 1e-6):
|
||||
super().__init__()
|
||||
self.eps = eps
|
||||
self.weight = nn.Parameter(torch.ones(dim))
|
||||
|
||||
def _norm(self, x):
|
||||
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
||||
|
||||
def forward(self, x):
|
||||
return self._norm(x.float()).type_as(x) * self.weight
|
||||
|
||||
|
||||
class QWenAttention(nn.Module):
|
||||
def __init__(self, config, index):
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
self.split_size = config.hidden_size
|
||||
self.num_heads = config.num_attention_heads
|
||||
self.head_dim = self.hidden_size // self.num_heads
|
||||
self.projection_size = config.kv_channels * config.num_attention_heads
|
||||
self.c_attn = nn.Linear(config.hidden_size, 3 * self.projection_size)
|
||||
self.c_proj = nn.Linear(config.hidden_size, self.projection_size, bias=not config.no_bias)
|
||||
self.attn_dropout = nn.Dropout(config.attn_dropout_prob)
|
||||
self.index = index
|
||||
|
||||
def _split_heads(self, tensor, num_heads, attn_head_size):
|
||||
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
|
||||
tensor = tensor.view(new_shape)
|
||||
return tensor
|
||||
|
||||
def _merge_heads(self, tensor, num_heads, attn_head_size):
|
||||
tensor = tensor.contiguous()
|
||||
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
|
||||
return tensor.view(new_shape)
|
||||
|
||||
|
||||
class QWenMLP(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
ff_dim_in = config.intermediate_size // 2
|
||||
self.w1 = nn.Linear(config.hidden_size, ff_dim_in, bias=not config.no_bias)
|
||||
self.w2 = nn.Linear(config.hidden_size, ff_dim_in, bias=not config.no_bias)
|
||||
self.c_proj = nn.Linear(ff_dim_in, config.hidden_size, bias=not config.no_bias)
|
||||
|
||||
|
||||
class QWenBlock(nn.Module):
|
||||
def __init__(self, config, index):
|
||||
super().__init__()
|
||||
self.ln_1 = RMSNorm(
|
||||
config.hidden_size,
|
||||
eps=config.layer_norm_epsilon,
|
||||
)
|
||||
self.attn = QWenAttention(config, index)
|
||||
self.ln_2 = RMSNorm(
|
||||
config.hidden_size,
|
||||
eps=config.layer_norm_epsilon,
|
||||
)
|
||||
self.mlp = QWenMLP(config)
|
||||
self.index = index
|
||||
|
||||
|
||||
class QWenModel(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.wte = nn.Embedding(config.vocab_size, config.hidden_size)
|
||||
self.drop = nn.Dropout(config.emb_dropout_prob)
|
||||
dim = config.kv_channels
|
||||
|
||||
self.h = nn.ModuleList([QWenBlock(config, i) for i in range(config.num_hidden_layers)])
|
||||
self.ln_f = RMSNorm(
|
||||
config.hidden_size,
|
||||
eps=config.layer_norm_epsilon,
|
||||
)
|
||||
|
||||
self.dim = dim
|
||||
self.base = config.rotary_emb_base
|
||||
inv_freq = 1.0 / (self.base ** (torch.arange(0, dim, 2).float() / dim))
|
||||
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
||||
self._rotary_pos_emb_cache = None
|
||||
self._seq_len_cached = 0
|
||||
self._ntk_alpha_cached = 1.0
|
||||
|
||||
def update_rotary_pos_emb_cache(self, seqlen, ntk_alpha=1.0):
|
||||
if seqlen > self._seq_len_cached or ntk_alpha != self._ntk_alpha_cached:
|
||||
base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
|
||||
self.inv_freq = 1.0 / (
|
||||
base ** (torch.arange(0, self.dim, 2, device=self.inv_freq.device).float() / self.dim)
|
||||
)
|
||||
self._seq_len_cached = max(2 * seqlen, 16)
|
||||
self._ntk_alpha_cached = ntk_alpha
|
||||
seq = torch.arange(self._seq_len_cached, device=self.inv_freq.device)
|
||||
freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq)
|
||||
|
||||
emb = torch.cat((freqs, freqs), dim=-1)
|
||||
emb = rearrange(emb, "n d -> 1 n 1 d")
|
||||
|
||||
cos, sin = emb.cos(), emb.sin()
|
||||
self._rotary_pos_emb_cache = [cos, sin]
|
||||
|
||||
|
||||
class QWenLMHeadModel(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.transformer = QWenModel(config)
|
||||
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
|
||||
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]]):
|
||||
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
|
||||
resolved_archive_file = os.path.join(pretrained_model_name_or_path, "model.safetensors.index.json")
|
||||
print(f"loading weights file {resolved_archive_file}")
|
||||
with open(resolved_archive_file, "r") as f:
|
||||
index = json.loads(f.read())
|
||||
shard_filenames = sorted(set(index["weight_map"].values()))
|
||||
resolved_archive_file = [os.path.join(pretrained_model_name_or_path, f) for f in shard_filenames]
|
||||
model = cls._load_pretrained_model(resolved_archive_file)
|
||||
return model
|
||||
|
||||
def _load_state_dict_into_model(self, model_to_load, state_dict, start_prefix):
|
||||
metadata = getattr(state_dict, "_metadata", None)
|
||||
state_dict = state_dict.copy()
|
||||
if metadata is not None:
|
||||
state_dict._metadata = metadata
|
||||
error_msgs = []
|
||||
|
||||
def load(module: nn.Module, state_dict, prefix=""):
|
||||
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
|
||||
args = (state_dict, prefix, local_metadata, True, [], [], error_msgs)
|
||||
if len([key for key in state_dict if key.startswith(prefix)]) > 0:
|
||||
module._load_from_state_dict(*args)
|
||||
|
||||
for name, child in module._modules.items():
|
||||
if child is not None:
|
||||
load(child, state_dict, prefix + name + ".")
|
||||
|
||||
load(model_to_load, state_dict, prefix=start_prefix)
|
||||
del state_dict
|
||||
return error_msgs
|
||||
|
||||
def _load_pretrained_model(cls, resolved_archive_file):
|
||||
start_prefix = ""
|
||||
model_to_load = cls
|
||||
if len(resolved_archive_file) > 1:
|
||||
resolved_archive_file = tqdm_lib.tqdm(resolved_archive_file, desc="Loading checkpoint shards")
|
||||
for shard_file in resolved_archive_file:
|
||||
state_dict = safe_load_file(shard_file)
|
||||
cls._load_state_dict_into_model(model_to_load, state_dict, start_prefix)
|
||||
del state_dict # force memory release
|
||||
gc.collect()
|
||||
print(f"All model checkpoint weights were used when initializing {cls.__class__.__name__}.\n")
|
||||
return cls
|
||||
|
||||
|
||||
class QwenRunner:
|
||||
def __init__(self, qwen):
|
||||
self.qwen = qwen
|
||||
|
||||
@torch.no_grad()
|
||||
def Chat(
|
||||
self,
|
||||
tokenizer,
|
||||
query: str,
|
||||
query_assistant: str,
|
||||
system: str = "You are a helpful assistant.",
|
||||
history=[],
|
||||
):
|
||||
qwen = self.qwen
|
||||
history = copy.deepcopy(history)
|
||||
raw_text, context_tokens = self.prepareInput(tokenizer, query, query_assistant, history, system)
|
||||
input_ids = torch.tensor([context_tokens]).to(next(qwen.parameters()).device)
|
||||
self.unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
|
||||
while True:
|
||||
outputs = self.forwardQWen(input_ids)
|
||||
next_token_scores = outputs[:, -1, :]
|
||||
|
||||
next_token_scores = self.repetition_penalty(input_ids, next_token_scores)
|
||||
next_token_scores = self.top_p(next_token_scores)
|
||||
next_tokens = self.sample(next_token_scores)
|
||||
finish, next_tokens = self.isFinish(next_tokens)
|
||||
if finish:
|
||||
break
|
||||
input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||||
|
||||
decoded, response, end_reason = decode_tokens(
|
||||
input_ids[0],
|
||||
tokenizer,
|
||||
raw_text_len=len(raw_text),
|
||||
context_length=len(context_tokens),
|
||||
errors="replace",
|
||||
)
|
||||
history.append((query, response))
|
||||
return input_ids[0].cpu().tolist(), history, decoded
|
||||
|
||||
def _rotate_half(self, x):
|
||||
x = rearrange(x, "... (j d) -> ... j d", j=2)
|
||||
x1, x2 = x.unbind(dim=-2)
|
||||
return torch.cat((-x2, x1), dim=-1)
|
||||
|
||||
def apply_rotary_pos_emb(self, t, freqs):
|
||||
rot_dim = freqs[0].shape[-1]
|
||||
cos, sin = freqs
|
||||
t_float = t.float()
|
||||
t_rot, t_pass = t_float[..., :rot_dim], t_float[..., rot_dim:]
|
||||
t_rot = (t_rot * cos) + (self._rotate_half(t_rot) * sin)
|
||||
return torch.cat((t_rot, t_pass), dim=-1).type_as(t)
|
||||
|
||||
def split_heads(
|
||||
self,
|
||||
attention,
|
||||
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
||||
):
|
||||
atten = attention
|
||||
mixed_x_layer = atten.c_attn(hidden_states)
|
||||
query, key, value = mixed_x_layer.split(atten.split_size, dim=2)
|
||||
query = atten._split_heads(query, atten.num_heads, atten.head_dim)
|
||||
key = atten._split_heads(key, atten.num_heads, atten.head_dim)
|
||||
value = atten._split_heads(value, atten.num_heads, atten.head_dim)
|
||||
return query, key, value
|
||||
|
||||
def pos_emb(self, query, key, rotary_pos_emb_list):
|
||||
rotary_pos_emb = rotary_pos_emb_list[0]
|
||||
rotary_pos_emb = [i[:, -query.shape[1] :, :, :] for i in rotary_pos_emb]
|
||||
rotary_pos_emb = (rotary_pos_emb,) * 2
|
||||
query = self.apply_rotary_pos_emb(query, rotary_pos_emb[0])
|
||||
key = self.apply_rotary_pos_emb(key, rotary_pos_emb[1])
|
||||
return query, key
|
||||
|
||||
def attention(self, attention, query, key, value, causal_mask):
|
||||
query = query.permute(0, 2, 1, 3)
|
||||
key = key.permute(0, 2, 1, 3)
|
||||
value = value.permute(0, 2, 1, 3)
|
||||
attn_output = F.scaled_dot_product_attention(query, key, value, attn_mask=causal_mask).transpose(1, 2)
|
||||
context_layer = attention._merge_heads(attn_output, attention.num_heads, attention.head_dim)
|
||||
attn_output = attention.c_proj(context_layer)
|
||||
return attn_output
|
||||
|
||||
def build_mask(self, query):
|
||||
size = query.size(1)
|
||||
causal_mask = torch.tril(torch.ones((size, size), dtype=torch.bool, device=query.device)).view(1, 1, size, size)
|
||||
return causal_mask
|
||||
|
||||
def forwardAttention(
|
||||
self,
|
||||
attention,
|
||||
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
||||
rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
|
||||
):
|
||||
query, key, value = self.split_heads(attention, hidden_states)
|
||||
query, key = self.pos_emb(query, key, rotary_pos_emb_list)
|
||||
causal_mask = self.build_mask(query)
|
||||
return self.attention(attention, query, key, value, causal_mask)
|
||||
|
||||
def forwardQWenBlock(
|
||||
self,
|
||||
block,
|
||||
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
||||
rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
|
||||
):
|
||||
layernorm_output = block.ln_1(hidden_states)
|
||||
|
||||
attn_outputs = self.forwardAttention(block.attn, layernorm_output, rotary_pos_emb_list)
|
||||
attn_output = attn_outputs[0]
|
||||
layernorm_input = attn_output + hidden_states
|
||||
|
||||
layernorm_output = block.ln_2(layernorm_input)
|
||||
a1 = block.mlp.w1(layernorm_output)
|
||||
a2 = block.mlp.w2(layernorm_output)
|
||||
intermediate_parallel = a1 * F.silu(a2)
|
||||
mlp_output = block.mlp.c_proj(intermediate_parallel)
|
||||
|
||||
hidden_states = layernorm_input + mlp_output
|
||||
return hidden_states
|
||||
|
||||
def forwardQWen(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
):
|
||||
transfm = self.qwen.transformer
|
||||
input_shape = input_ids.size()
|
||||
input_ids = input_ids.view(-1, input_shape[-1])
|
||||
hidden_states = transfm.wte(input_ids)
|
||||
kv_seq_len = hidden_states.size()[1]
|
||||
|
||||
transfm.update_rotary_pos_emb_cache(kv_seq_len, ntk_alpha=1.0)
|
||||
cos, sin = transfm._rotary_pos_emb_cache
|
||||
rotary_pos_emb_list = [[cos[:, :kv_seq_len], sin[:, :kv_seq_len]]]
|
||||
|
||||
hidden_states = transfm.drop(hidden_states)
|
||||
output_shape = input_shape + (hidden_states.size(-1),)
|
||||
|
||||
for block in transfm.h:
|
||||
hidden_states = self.forwardQWenBlock(block, hidden_states, rotary_pos_emb_list=rotary_pos_emb_list)
|
||||
|
||||
hidden_states = transfm.ln_f(hidden_states)
|
||||
hidden_states = hidden_states.view(output_shape)
|
||||
|
||||
lm_logits = self.qwen.lm_head(hidden_states)
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
labels = labels.to(lm_logits.device)
|
||||
shift_logits = lm_logits[..., :-1, :].contiguous()
|
||||
shift_labels = labels[..., 1:].contiguous()
|
||||
loss_fct = CrossEntropyLoss()
|
||||
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
||||
|
||||
# shift_labels = torch.ones([1,19]).to(lm_logits.device).to(torch.int64)
|
||||
# shift_logits = lm_logits[..., :-1, :].contiguous()
|
||||
# loss_fct = CrossEntropyLoss()
|
||||
# loss = loss_fct(
|
||||
# shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
|
||||
# )
|
||||
# loss.backward()
|
||||
|
||||
return lm_logits
|
||||
|
||||
def prepareInput(self, tokenizer, query, query_assistant, history, system):
|
||||
return make_context(tokenizer, query, query_assistant, history=history, system=system)
|
||||
|
||||
def repetition_penalty(self, input_ids, next_token_scores):
|
||||
penalty = self.qwen.config.repetition_penalty
|
||||
score = torch.gather(next_token_scores, 1, input_ids)
|
||||
# if score < 0 then repetition penalty has to be multiplied to reduce the token probabilities
|
||||
score = torch.where(score < 0, score * penalty, score / penalty)
|
||||
next_token_scores = next_token_scores.scatter_(1, input_ids, score)
|
||||
return next_token_scores
|
||||
|
||||
def top_p(self, next_token_scores):
|
||||
top_p = self.qwen.config.top_p
|
||||
filter_value = -float("Inf")
|
||||
min_tokens_to_keep = 1
|
||||
sorted_logits, sorted_indices = torch.sort(next_token_scores, descending=False)
|
||||
cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1)
|
||||
# Remove tokens with cumulative top_p above the threshold (token with 0 are kept)
|
||||
sorted_indices_to_remove = cumulative_probs <= (1 - top_p)
|
||||
# Keep at least min_tokens_to_keep
|
||||
sorted_indices_to_remove[..., -min_tokens_to_keep:] = 0
|
||||
# scatter sorted tensors to original indexing
|
||||
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
|
||||
next_token_scores = next_token_scores.masked_fill(indices_to_remove, filter_value)
|
||||
return next_token_scores
|
||||
|
||||
def sample(self, next_token_scores):
|
||||
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
||||
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
||||
return next_tokens
|
||||
|
||||
def isFinish(self, next_tokens):
|
||||
pad_token_id = self.qwen.config.pad_token_id
|
||||
eos_token_id_tensor = torch.tensor([self.qwen.config.eos_token_id]).to(next_tokens.device)
|
||||
|
||||
next_tokens = next_tokens * self.unfinished_sequences + pad_token_id * (1 - self.unfinished_sequences)
|
||||
self.unfinished_sequences = self.unfinished_sequences.mul(
|
||||
next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
|
||||
)
|
||||
return self.unfinished_sequences.max() == 0, next_tokens[:, None]
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,109 @@
|
|||
# Copyright (c) Alibaba Cloud.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
"""Generation support."""
|
||||
|
||||
from typing import Tuple, List, Union, Iterable
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from transformers import PreTrainedTokenizer
|
||||
from transformers import logging
|
||||
from transformers.generation import LogitsProcessor
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
# Types.
|
||||
HistoryType = List[Tuple[str, str]]
|
||||
TokensType = List[int]
|
||||
BatchTokensType = List[List[int]]
|
||||
|
||||
|
||||
def make_context(
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
query: str,
|
||||
query_assistant: str = "",
|
||||
history: List[Tuple[str, str]] = None,
|
||||
system: str = "",
|
||||
max_window_size: int = 6144,
|
||||
):
|
||||
if history is None:
|
||||
history = []
|
||||
|
||||
im_start, im_end = "<|im_start|>", "<|im_end|>"
|
||||
im_start_tokens = [tokenizer.im_start_id]
|
||||
im_end_tokens = [tokenizer.im_end_id]
|
||||
nl_tokens = tokenizer.encode("\n")
|
||||
|
||||
def _tokenize_str(role, content):
|
||||
return f"{role}\n{content}", tokenizer.encode(role, allowed_special=set()) + nl_tokens + tokenizer.encode(
|
||||
content, allowed_special=set()
|
||||
)
|
||||
|
||||
system_text, system_tokens_part = _tokenize_str("system", system)
|
||||
system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
|
||||
assistant_tokens = tokenizer.encode(query_assistant, allowed_special=set())
|
||||
raw_text = ""
|
||||
context_tokens = []
|
||||
|
||||
for turn_query, turn_response in reversed(history):
|
||||
query_text, query_tokens_part = _tokenize_str("user", turn_query)
|
||||
query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
|
||||
response_text, response_tokens_part = _tokenize_str("assistant", turn_response)
|
||||
response_tokens = im_start_tokens + response_tokens_part + im_end_tokens
|
||||
|
||||
next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
|
||||
prev_chat = f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
|
||||
|
||||
current_context_size = len(system_tokens) + len(next_context_tokens) + len(context_tokens)
|
||||
if current_context_size < max_window_size:
|
||||
context_tokens = next_context_tokens + context_tokens
|
||||
raw_text = prev_chat + raw_text
|
||||
else:
|
||||
break
|
||||
|
||||
context_tokens = system_tokens + context_tokens
|
||||
raw_text = f"{im_start}{system_text}{im_end}" + raw_text
|
||||
context_tokens += (
|
||||
nl_tokens
|
||||
+ im_start_tokens
|
||||
+ _tokenize_str("user", query)[1]
|
||||
+ im_end_tokens
|
||||
+ nl_tokens
|
||||
+ im_start_tokens
|
||||
+ tokenizer.encode("assistant")
|
||||
+ nl_tokens
|
||||
+ assistant_tokens
|
||||
)
|
||||
raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n{query_assistant}"
|
||||
|
||||
return raw_text, context_tokens
|
||||
|
||||
|
||||
def decode_tokens(
|
||||
tokens: Union[torch.LongTensor, TokensType],
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
raw_text_len: int = 0,
|
||||
context_length: int = 0,
|
||||
errors: str = "replace",
|
||||
) -> str:
|
||||
if torch.is_tensor(tokens):
|
||||
tokens = tokens.cpu().numpy().tolist()
|
||||
|
||||
end_reason = f"Gen length {len(tokens)}"
|
||||
eod_token_idx = context_length
|
||||
for eod_token_idx in range(context_length, len(tokens)):
|
||||
if tokens[eod_token_idx] in [tokenizer.im_start_id, tokenizer.im_end_id]:
|
||||
end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]])!r}"
|
||||
break
|
||||
|
||||
decoded = tokenizer.decode(tokens, errors=errors)
|
||||
|
||||
decode_tokens = tokenizer.decode(tokens[:eod_token_idx], errors=errors)
|
||||
trim_decode_tokens = decode_tokens[raw_text_len:]
|
||||
trim_decode_tokens = trim_decode_tokens.strip()
|
||||
|
||||
return decoded, trim_decode_tokens, end_reason
|
|
@ -0,0 +1,266 @@
|
|||
# Copyright (c) Alibaba Cloud.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
"""Tokenization classes for QWen."""
|
||||
|
||||
import base64
|
||||
import logging
|
||||
import os
|
||||
import unicodedata
|
||||
from typing import Collection, Dict, List, Set, Tuple, Union
|
||||
|
||||
import tiktoken
|
||||
from transformers import PreTrainedTokenizer, AddedToken
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
|
||||
|
||||
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
||||
ENDOFTEXT = "<|endoftext|>"
|
||||
IMSTART = "<|im_start|>"
|
||||
IMEND = "<|im_end|>"
|
||||
# as the default behavior is changed to allow special tokens in
|
||||
# regular texts, the surface forms of special tokens need to be
|
||||
# as different as possible to minimize the impact
|
||||
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
|
||||
# changed to use actual index to avoid misconfiguration with vocabulary expansion
|
||||
SPECIAL_START_ID = 151643
|
||||
SPECIAL_TOKENS = tuple(
|
||||
enumerate(
|
||||
(
|
||||
(
|
||||
ENDOFTEXT,
|
||||
IMSTART,
|
||||
IMEND,
|
||||
)
|
||||
+ EXTRAS
|
||||
),
|
||||
start=SPECIAL_START_ID,
|
||||
)
|
||||
)
|
||||
SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
|
||||
|
||||
|
||||
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
||||
with open(tiktoken_bpe_file, "rb") as f:
|
||||
contents = f.read()
|
||||
return {
|
||||
base64.b64decode(token): int(rank) for token, rank in (line.split() for line in contents.splitlines() if line)
|
||||
}
|
||||
|
||||
|
||||
class QWenTokenizer(PreTrainedTokenizer):
|
||||
"""QWen tokenizer."""
|
||||
|
||||
vocab_files_names = VOCAB_FILES_NAMES
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_file,
|
||||
errors="replace",
|
||||
extra_vocab_file=None,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(**kwargs)
|
||||
|
||||
# how to handle errors in decoding UTF-8 byte sequences
|
||||
# use ignore if you are in streaming inference
|
||||
self.errors = errors
|
||||
|
||||
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
|
||||
self.special_tokens = {token: index for index, token in SPECIAL_TOKENS}
|
||||
|
||||
# try load extra vocab from file
|
||||
if extra_vocab_file is not None:
|
||||
used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
|
||||
extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
|
||||
for token, index in extra_mergeable_ranks.items():
|
||||
if token in self.mergeable_ranks:
|
||||
logger.info(f"extra token {token} exists, skipping")
|
||||
continue
|
||||
if index in used_ids:
|
||||
logger.info(f"the index {index} for extra token {token} exists, skipping")
|
||||
continue
|
||||
self.mergeable_ranks[token] = index
|
||||
# the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
|
||||
|
||||
enc = tiktoken.Encoding(
|
||||
"Qwen",
|
||||
pat_str=PAT_STR,
|
||||
mergeable_ranks=self.mergeable_ranks,
|
||||
special_tokens=self.special_tokens,
|
||||
)
|
||||
assert (
|
||||
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
|
||||
), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
|
||||
|
||||
self.decoder = {v: k for k, v in self.mergeable_ranks.items()} # type: dict[int, bytes|str]
|
||||
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
||||
|
||||
self.tokenizer = enc # type: tiktoken.Encoding
|
||||
|
||||
self.eod_id = self.tokenizer.eot_token
|
||||
self.im_start_id = self.special_tokens[IMSTART]
|
||||
self.im_end_id = self.special_tokens[IMEND]
|
||||
|
||||
def __getstate__(self):
|
||||
# for pickle lovers
|
||||
state = self.__dict__.copy()
|
||||
del state["tokenizer"]
|
||||
return state
|
||||
|
||||
def __setstate__(self, state):
|
||||
# tokenizer is not python native; don't pass it; rebuild it
|
||||
self.__dict__.update(state)
|
||||
enc = tiktoken.Encoding(
|
||||
"Qwen",
|
||||
pat_str=PAT_STR,
|
||||
mergeable_ranks=self.mergeable_ranks,
|
||||
special_tokens=self.special_tokens,
|
||||
)
|
||||
self.tokenizer = enc
|
||||
|
||||
def __len__(self) -> int:
|
||||
return self.tokenizer.n_vocab
|
||||
|
||||
def get_vocab(self) -> Dict[bytes, int]:
|
||||
return self.mergeable_ranks
|
||||
|
||||
def convert_tokens_to_ids(self, tokens: Union[bytes, str, List[Union[bytes, str]]]) -> List[int]:
|
||||
ids = []
|
||||
if isinstance(tokens, (str, bytes)):
|
||||
if tokens in self.special_tokens:
|
||||
return self.special_tokens[tokens]
|
||||
else:
|
||||
return self.mergeable_ranks.get(tokens)
|
||||
for token in tokens:
|
||||
if token in self.special_tokens:
|
||||
ids.append(self.special_tokens[token])
|
||||
else:
|
||||
ids.append(self.mergeable_ranks.get(token))
|
||||
return ids
|
||||
|
||||
def _add_tokens(
|
||||
self,
|
||||
new_tokens: Union[List[str], List[AddedToken]],
|
||||
special_tokens: bool = False,
|
||||
) -> int:
|
||||
if not special_tokens and new_tokens:
|
||||
raise ValueError("Adding regular tokens is not supported")
|
||||
for token in new_tokens:
|
||||
surface_form = token.content if isinstance(token, AddedToken) else token
|
||||
if surface_form not in SPECIAL_TOKENS_SET:
|
||||
raise ValueError("Adding unknown special tokens is not supported")
|
||||
return 0
|
||||
|
||||
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
||||
"""
|
||||
Save only the vocabulary of the tokenizer (vocabulary).
|
||||
|
||||
Returns:
|
||||
`Tuple(str)`: Paths to the files saved.
|
||||
"""
|
||||
file_path = os.path.join(save_directory, "qwen.tiktoken")
|
||||
with open(file_path, "w", encoding="utf8") as w:
|
||||
for k, v in self.mergeable_ranks.items():
|
||||
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
||||
w.write(line)
|
||||
return (file_path,)
|
||||
|
||||
def tokenize(
|
||||
self,
|
||||
text: str,
|
||||
allowed_special: Union[Set, str] = "all",
|
||||
disallowed_special: Union[Collection, str] = (),
|
||||
**kwargs,
|
||||
) -> List[Union[bytes, str]]:
|
||||
"""
|
||||
Converts a string in a sequence of tokens.
|
||||
|
||||
Args:
|
||||
text (`str`):
|
||||
The sequence to be encoded.
|
||||
allowed_special (`Literal["all"]` or `set`):
|
||||
The surface forms of the tokens to be encoded as special tokens in regular texts.
|
||||
Default to "all".
|
||||
disallowed_special (`Literal["all"]` or `Collection`):
|
||||
The surface forms of the tokens that should not be in regular texts and trigger errors.
|
||||
Default to an empty tuple.
|
||||
|
||||
kwargs (additional keyword arguments, *optional*):
|
||||
Will be passed to the underlying model specific encode method.
|
||||
|
||||
Returns:
|
||||
`List[bytes|str]`: The list of tokens.
|
||||
"""
|
||||
tokens = []
|
||||
text = unicodedata.normalize("NFC", text)
|
||||
|
||||
# this implementation takes a detour: text -> token id -> token surface forms
|
||||
for t in self.tokenizer.encode(text, allowed_special=allowed_special, disallowed_special=disallowed_special):
|
||||
tokens.append(self.decoder[t])
|
||||
return tokens
|
||||
|
||||
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
||||
"""
|
||||
Converts a sequence of tokens in a single string.
|
||||
"""
|
||||
text = ""
|
||||
temp = b""
|
||||
for t in tokens:
|
||||
if isinstance(t, str):
|
||||
if temp:
|
||||
text += temp.decode("utf-8", errors=self.errors)
|
||||
temp = b""
|
||||
text += t
|
||||
elif isinstance(t, bytes):
|
||||
temp += t
|
||||
else:
|
||||
raise TypeError("token should only be of type types or str")
|
||||
if temp:
|
||||
text += temp.decode("utf-8", errors=self.errors)
|
||||
return text
|
||||
|
||||
@property
|
||||
def vocab_size(self):
|
||||
return self.tokenizer.n_vocab
|
||||
|
||||
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
||||
"""Converts an id to a token, special tokens included"""
|
||||
if index in self.decoder:
|
||||
return self.decoder[index]
|
||||
raise ValueError("unknown ids")
|
||||
|
||||
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
||||
"""Converts a token to an id using the vocab, special tokens included"""
|
||||
if token in self.special_tokens:
|
||||
return self.special_tokens[token]
|
||||
if token in self.mergeable_ranks:
|
||||
return self.mergeable_ranks[token]
|
||||
raise ValueError("unknown token")
|
||||
|
||||
def _tokenize(self, text: str, **kwargs):
|
||||
"""
|
||||
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
||||
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
||||
|
||||
Do NOT take care of added tokens.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def _decode(
|
||||
self,
|
||||
token_ids: Union[int, List[int]],
|
||||
skip_special_tokens: bool = False,
|
||||
errors: str = None,
|
||||
**kwargs,
|
||||
) -> str:
|
||||
if isinstance(token_ids, int):
|
||||
token_ids = [token_ids]
|
||||
if skip_special_tokens:
|
||||
token_ids = [i for i in token_ids if i < self.eod_id]
|
||||
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|
|
@ -0,0 +1,10 @@
|
|||
{
|
||||
"model_max_length": 8192,
|
||||
"tokenizer_class": "QWenTokenizer",
|
||||
"auto_map": {
|
||||
"AutoTokenizer": [
|
||||
"tokenization_qwen.QWenTokenizer",
|
||||
null
|
||||
]
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue