Compare commits
No commits in common. "a8f2fbbff56b03ec4d9d7dacacbf77dcea77114d" and "f6538c1111a9747ab873529ba1c52644d955cad3" have entirely different histories.
a8f2fbbff5
...
f6538c1111
10
qwen/demo.py
10
qwen/demo.py
|
@ -14,7 +14,7 @@ model_dir = snapshot_download("qwen/Qwen-1_8B-Chat")
|
||||||
# model_dir = "/home/colin/.cache/modelscope/hub/qwen/Qwen-1_8B-Chat"
|
# model_dir = "/home/colin/.cache/modelscope/hub/qwen/Qwen-1_8B-Chat"
|
||||||
|
|
||||||
config, kwargs = AutoConfig.from_pretrained(
|
config, kwargs = AutoConfig.from_pretrained(
|
||||||
"./",
|
model_dir,
|
||||||
return_unused_kwargs=True,
|
return_unused_kwargs=True,
|
||||||
trust_remote_code=True,
|
trust_remote_code=True,
|
||||||
code_revision=None,
|
code_revision=None,
|
||||||
|
@ -25,15 +25,15 @@ model = QWenLMHeadModel(config)
|
||||||
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
|
||||||
model = model.from_pretrained(
|
model = model.from_pretrained(
|
||||||
model_dir, config=config, device_map="auto", trust_remote_code=True
|
model_dir, device_map="auto", trust_remote_code=True
|
||||||
).train()
|
).train()
|
||||||
# model.train()
|
# model.train()
|
||||||
# model.zero_grad()
|
# model.zero_grad()
|
||||||
|
|
||||||
# 可指定不同的生成长度、top_p等相关超参
|
# 可指定不同的生成长度、top_p等相关超参
|
||||||
# model.generation_config = GenerationConfig.from_pretrained(
|
model.generation_config = GenerationConfig.from_pretrained(
|
||||||
# model_dir, trust_remote_code=True
|
model_dir, trust_remote_code=True
|
||||||
# )
|
)
|
||||||
|
|
||||||
# 第一轮对话
|
# 第一轮对话
|
||||||
response, history = model.chat(tokenizer, "你好", history=None)
|
response, history = model.chat(tokenizer, "你好", history=None)
|
||||||
|
|
|
@ -0,0 +1,52 @@
|
||||||
|
{
|
||||||
|
"fp16": {
|
||||||
|
"enabled": "auto",
|
||||||
|
"loss_scale": 0,
|
||||||
|
"loss_scale_window": 1000,
|
||||||
|
"initial_scale_power": 16,
|
||||||
|
"hysteresis": 2,
|
||||||
|
"min_loss_scale": 1
|
||||||
|
},
|
||||||
|
"bf16": {
|
||||||
|
"enabled": "auto"
|
||||||
|
},
|
||||||
|
"optimizer": {
|
||||||
|
"type": "AdamW",
|
||||||
|
"params": {
|
||||||
|
"lr": "auto",
|
||||||
|
"betas": "auto",
|
||||||
|
"eps": "auto",
|
||||||
|
"weight_decay": "auto"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
|
||||||
|
"scheduler": {
|
||||||
|
"type": "WarmupLR",
|
||||||
|
"params": {
|
||||||
|
"warmup_min_lr": "auto",
|
||||||
|
"warmup_max_lr": "auto",
|
||||||
|
"warmup_num_steps": "auto"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
|
||||||
|
"zero_optimization": {
|
||||||
|
"stage": 2,
|
||||||
|
"offload_optimizer": {
|
||||||
|
"device": "none",
|
||||||
|
"pin_memory": true
|
||||||
|
},
|
||||||
|
"allgather_partitions": true,
|
||||||
|
"allgather_bucket_size": 2e8,
|
||||||
|
"overlap_comm": true,
|
||||||
|
"reduce_scatter": true,
|
||||||
|
"reduce_bucket_size": 2e8,
|
||||||
|
"contiguous_gradients": true
|
||||||
|
},
|
||||||
|
|
||||||
|
"gradient_accumulation_steps": "auto",
|
||||||
|
"gradient_clipping": "auto",
|
||||||
|
"steps_per_print": 100,
|
||||||
|
"train_batch_size": "auto",
|
||||||
|
"train_micro_batch_size_per_gpu": "auto",
|
||||||
|
"wall_clock_breakdown": false
|
||||||
|
}
|
|
@ -0,0 +1,59 @@
|
||||||
|
{
|
||||||
|
"fp16": {
|
||||||
|
"enabled": "auto",
|
||||||
|
"loss_scale": 0,
|
||||||
|
"loss_scale_window": 1000,
|
||||||
|
"initial_scale_power": 16,
|
||||||
|
"hysteresis": 2,
|
||||||
|
"min_loss_scale": 1
|
||||||
|
},
|
||||||
|
"bf16": {
|
||||||
|
"enabled": "auto"
|
||||||
|
},
|
||||||
|
"optimizer": {
|
||||||
|
"type": "AdamW",
|
||||||
|
"params": {
|
||||||
|
"lr": "auto",
|
||||||
|
"betas": "auto",
|
||||||
|
"eps": "auto",
|
||||||
|
"weight_decay": "auto"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
|
||||||
|
"scheduler": {
|
||||||
|
"type": "WarmupLR",
|
||||||
|
"params": {
|
||||||
|
"warmup_min_lr": "auto",
|
||||||
|
"warmup_max_lr": "auto",
|
||||||
|
"warmup_num_steps": "auto"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
|
||||||
|
"zero_optimization": {
|
||||||
|
"stage": 3,
|
||||||
|
"offload_optimizer": {
|
||||||
|
"device": "none",
|
||||||
|
"pin_memory": true
|
||||||
|
},
|
||||||
|
"offload_param": {
|
||||||
|
"device": "none",
|
||||||
|
"pin_memory": true
|
||||||
|
},
|
||||||
|
"overlap_comm": true,
|
||||||
|
"contiguous_gradients": true,
|
||||||
|
"sub_group_size": 1e9,
|
||||||
|
"reduce_bucket_size": "auto",
|
||||||
|
"stage3_prefetch_bucket_size": "auto",
|
||||||
|
"stage3_param_persistence_threshold": "auto",
|
||||||
|
"stage3_max_live_parameters": 1e9,
|
||||||
|
"stage3_max_reuse_distance": 1e9,
|
||||||
|
"stage3_gather_16bit_weights_on_model_save": true
|
||||||
|
},
|
||||||
|
|
||||||
|
"gradient_accumulation_steps": "auto",
|
||||||
|
"gradient_clipping": "auto",
|
||||||
|
"steps_per_print": 100,
|
||||||
|
"train_batch_size": "auto",
|
||||||
|
"train_micro_batch_size_per_gpu": "auto",
|
||||||
|
"wall_clock_breakdown": false
|
||||||
|
}
|
|
@ -0,0 +1,90 @@
|
||||||
|
#!/bin/bash
|
||||||
|
export CUDA_DEVICE_MAX_CONNECTIONS=1
|
||||||
|
DIR=`pwd`
|
||||||
|
|
||||||
|
# Guide:
|
||||||
|
# This script supports distributed training on multi-gpu workers (as well as single-worker training).
|
||||||
|
# Please set the options below according to the comments.
|
||||||
|
# For multi-gpu workers training, these options should be manually set for each worker.
|
||||||
|
# After setting the options, please run the script on each worker.
|
||||||
|
|
||||||
|
# Number of GPUs per GPU worker
|
||||||
|
GPUS_PER_NODE=$(python -c 'import torch; print(torch.cuda.device_count())')
|
||||||
|
|
||||||
|
# Number of GPU workers, for single-worker training, please set to 1
|
||||||
|
NNODES=${NNODES:-1}
|
||||||
|
|
||||||
|
# The rank of this worker, should be in {0, ..., WORKER_CNT-1}, for single-worker training, please set to 0
|
||||||
|
NODE_RANK=${NODE_RANK:-0}
|
||||||
|
|
||||||
|
# The ip address of the rank-0 worker, for single-worker training, please set to localhost
|
||||||
|
MASTER_ADDR=${MASTER_ADDR:localhost}
|
||||||
|
|
||||||
|
# The port for communication
|
||||||
|
MASTER_PORT=${MASTER_PORT:-6001}
|
||||||
|
|
||||||
|
MODEL="Qwen/Qwen-7B" # Set the path if you do not want to load from huggingface directly
|
||||||
|
# ATTENTION: specify the path to your training data, which should be a json file consisting of a list of conversations.
|
||||||
|
# See the section for finetuning in README for more information.
|
||||||
|
DATA="path_to_data"
|
||||||
|
|
||||||
|
function usage() {
|
||||||
|
echo '
|
||||||
|
Usage: bash finetune/finetune_ds.sh [-m MODEL_PATH] [-d DATA_PATH]
|
||||||
|
'
|
||||||
|
}
|
||||||
|
|
||||||
|
while [[ "$1" != "" ]]; do
|
||||||
|
case $1 in
|
||||||
|
-m | --model )
|
||||||
|
shift
|
||||||
|
MODEL=$1
|
||||||
|
;;
|
||||||
|
-d | --data )
|
||||||
|
shift
|
||||||
|
DATA=$1
|
||||||
|
;;
|
||||||
|
-h | --help )
|
||||||
|
usage
|
||||||
|
exit 0
|
||||||
|
;;
|
||||||
|
* )
|
||||||
|
echo "Unknown argument ${1}"
|
||||||
|
exit 1
|
||||||
|
;;
|
||||||
|
esac
|
||||||
|
shift
|
||||||
|
done
|
||||||
|
|
||||||
|
DISTRIBUTED_ARGS="
|
||||||
|
--nproc_per_node $GPUS_PER_NODE \
|
||||||
|
--nnodes $NNODES \
|
||||||
|
--node_rank $NODE_RANK \
|
||||||
|
--master_addr $MASTER_ADDR \
|
||||||
|
--master_port $MASTER_PORT
|
||||||
|
"
|
||||||
|
|
||||||
|
torchrun $DISTRIBUTED_ARGS finetune.py \
|
||||||
|
--model_name_or_path $MODEL \
|
||||||
|
--data_path $DATA \
|
||||||
|
--bf16 True \
|
||||||
|
--output_dir output_qwen \
|
||||||
|
--num_train_epochs 5 \
|
||||||
|
--per_device_train_batch_size 1 \
|
||||||
|
--per_device_eval_batch_size 1 \
|
||||||
|
--gradient_accumulation_steps 16 \
|
||||||
|
--evaluation_strategy "no" \
|
||||||
|
--save_strategy "steps" \
|
||||||
|
--save_steps 1000 \
|
||||||
|
--save_total_limit 10 \
|
||||||
|
--learning_rate 1e-5 \
|
||||||
|
--weight_decay 0.1 \
|
||||||
|
--adam_beta2 0.95 \
|
||||||
|
--warmup_ratio 0.01 \
|
||||||
|
--lr_scheduler_type "cosine" \
|
||||||
|
--logging_steps 1 \
|
||||||
|
--report_to "none" \
|
||||||
|
--model_max_length 512 \
|
||||||
|
--gradient_checkpointing True \
|
||||||
|
--lazy_preprocess True \
|
||||||
|
--deepspeed finetune/ds_config_zero3.json
|
|
@ -0,0 +1,96 @@
|
||||||
|
#!/bin/bash
|
||||||
|
export CUDA_DEVICE_MAX_CONNECTIONS=1
|
||||||
|
DIR=`pwd`
|
||||||
|
|
||||||
|
# Guide:
|
||||||
|
# This script supports distributed training on multi-gpu workers (as well as single-worker training).
|
||||||
|
# Please set the options below according to the comments.
|
||||||
|
# For multi-gpu workers training, these options should be manually set for each worker.
|
||||||
|
# After setting the options, please run the script on each worker.
|
||||||
|
|
||||||
|
# Number of GPUs per GPU worker
|
||||||
|
GPUS_PER_NODE=$(python -c 'import torch; print(torch.cuda.device_count())')
|
||||||
|
|
||||||
|
# Number of GPU workers, for single-worker training, please set to 1
|
||||||
|
NNODES=${NNODES:-1}
|
||||||
|
|
||||||
|
# The rank of this worker, should be in {0, ..., WORKER_CNT-1}, for single-worker training, please set to 0
|
||||||
|
NODE_RANK=${NODE_RANK:-0}
|
||||||
|
|
||||||
|
# The ip address of the rank-0 worker, for single-worker training, please set to localhost
|
||||||
|
MASTER_ADDR=${MASTER_ADDR:localhost}
|
||||||
|
|
||||||
|
# The port for communication
|
||||||
|
MASTER_PORT=${MASTER_PORT:-6001}
|
||||||
|
|
||||||
|
MODEL="Qwen/Qwen-7B" # Set the path if you do not want to load from huggingface directly
|
||||||
|
# ATTENTION: specify the path to your training data, which should be a json file consisting of a list of conversations.
|
||||||
|
# See the section for finetuning in README for more information.
|
||||||
|
DATA="path_to_data"
|
||||||
|
DS_CONFIG_PATH="finetune/ds_config_zero2.json"
|
||||||
|
|
||||||
|
function usage() {
|
||||||
|
echo '
|
||||||
|
Usage: bash finetune/finetune_lora_ds.sh [-m MODEL_PATH] [-d DATA_PATH] [--deepspeed DS_CONFIG_PATH]
|
||||||
|
'
|
||||||
|
}
|
||||||
|
|
||||||
|
while [[ "$1" != "" ]]; do
|
||||||
|
case $1 in
|
||||||
|
-m | --model )
|
||||||
|
shift
|
||||||
|
MODEL=$1
|
||||||
|
;;
|
||||||
|
-d | --data )
|
||||||
|
shift
|
||||||
|
DATA=$1
|
||||||
|
;;
|
||||||
|
--deepspeed )
|
||||||
|
shift
|
||||||
|
DS_CONFIG_PATH=$1
|
||||||
|
;;
|
||||||
|
-h | --help )
|
||||||
|
usage
|
||||||
|
exit 0
|
||||||
|
;;
|
||||||
|
* )
|
||||||
|
echo "Unknown argument ${1}"
|
||||||
|
exit 1
|
||||||
|
;;
|
||||||
|
esac
|
||||||
|
shift
|
||||||
|
done
|
||||||
|
|
||||||
|
DISTRIBUTED_ARGS="
|
||||||
|
--nproc_per_node $GPUS_PER_NODE \
|
||||||
|
--nnodes $NNODES \
|
||||||
|
--node_rank $NODE_RANK \
|
||||||
|
--master_addr $MASTER_ADDR \
|
||||||
|
--master_port $MASTER_PORT
|
||||||
|
"
|
||||||
|
|
||||||
|
torchrun $DISTRIBUTED_ARGS finetune.py \
|
||||||
|
--model_name_or_path $MODEL \
|
||||||
|
--data_path $DATA \
|
||||||
|
--bf16 True \
|
||||||
|
--output_dir output_qwen \
|
||||||
|
--num_train_epochs 5 \
|
||||||
|
--per_device_train_batch_size 2 \
|
||||||
|
--per_device_eval_batch_size 1 \
|
||||||
|
--gradient_accumulation_steps 8 \
|
||||||
|
--evaluation_strategy "no" \
|
||||||
|
--save_strategy "steps" \
|
||||||
|
--save_steps 1000 \
|
||||||
|
--save_total_limit 10 \
|
||||||
|
--learning_rate 3e-4 \
|
||||||
|
--weight_decay 0.1 \
|
||||||
|
--adam_beta2 0.95 \
|
||||||
|
--warmup_ratio 0.01 \
|
||||||
|
--lr_scheduler_type "cosine" \
|
||||||
|
--logging_steps 1 \
|
||||||
|
--report_to "none" \
|
||||||
|
--model_max_length 512 \
|
||||||
|
--lazy_preprocess True \
|
||||||
|
--use_lora \
|
||||||
|
--gradient_checkpointing \
|
||||||
|
--deepspeed ${DS_CONFIG_PATH}
|
|
@ -0,0 +1,93 @@
|
||||||
|
#!/bin/bash
|
||||||
|
export CUDA_DEVICE_MAX_CONNECTIONS=1
|
||||||
|
DIR=`pwd`
|
||||||
|
|
||||||
|
# Guide:
|
||||||
|
# This script supports distributed training on multi-gpu workers (as well as single-worker training).
|
||||||
|
# Please set the options below according to the comments.
|
||||||
|
# For multi-gpu workers training, these options should be manually set for each worker.
|
||||||
|
# After setting the options, please run the script on each worker.
|
||||||
|
|
||||||
|
# Number of GPUs per GPU worker
|
||||||
|
GPUS_PER_NODE=$(python -c 'import torch; print(torch.cuda.device_count())')
|
||||||
|
|
||||||
|
# Number of GPU workers, for single-worker training, please set to 1
|
||||||
|
NNODES=${NNODES:-1}
|
||||||
|
|
||||||
|
# The rank of this worker, should be in {0, ..., WORKER_CNT-1}, for single-worker training, please set to 0
|
||||||
|
NODE_RANK=${NODE_RANK:-0}
|
||||||
|
|
||||||
|
# The ip address of the rank-0 worker, for single-worker training, please set to localhost
|
||||||
|
MASTER_ADDR=${MASTER_ADDR:localhost}
|
||||||
|
|
||||||
|
# The port for communication
|
||||||
|
MASTER_PORT=${MASTER_PORT:-6001}
|
||||||
|
|
||||||
|
MODEL="Qwen/Qwen-7B-Chat-Int4" # Set the path if you do not want to load from huggingface directly
|
||||||
|
# ATTENTION: specify the path to your training data, which should be a json file consisting of a list of conversations.
|
||||||
|
# See the section for finetuning in README for more information.
|
||||||
|
DATA="path_to_data"
|
||||||
|
|
||||||
|
function usage() {
|
||||||
|
echo '
|
||||||
|
Usage: bash finetune/finetune_qlora_ds.sh [-m MODEL_PATH] [-d DATA_PATH]
|
||||||
|
'
|
||||||
|
}
|
||||||
|
|
||||||
|
while [[ "$1" != "" ]]; do
|
||||||
|
case $1 in
|
||||||
|
-m | --model )
|
||||||
|
shift
|
||||||
|
MODEL=$1
|
||||||
|
;;
|
||||||
|
-d | --data )
|
||||||
|
shift
|
||||||
|
DATA=$1
|
||||||
|
;;
|
||||||
|
-h | --help )
|
||||||
|
usage
|
||||||
|
exit 0
|
||||||
|
;;
|
||||||
|
* )
|
||||||
|
echo "Unknown argument ${1}"
|
||||||
|
exit 1
|
||||||
|
;;
|
||||||
|
esac
|
||||||
|
shift
|
||||||
|
done
|
||||||
|
|
||||||
|
DISTRIBUTED_ARGS="
|
||||||
|
--nproc_per_node $GPUS_PER_NODE \
|
||||||
|
--nnodes $NNODES \
|
||||||
|
--node_rank $NODE_RANK \
|
||||||
|
--master_addr $MASTER_ADDR \
|
||||||
|
--master_port $MASTER_PORT
|
||||||
|
"
|
||||||
|
|
||||||
|
# Remember to use --fp16 instead of --bf16 due to autogptq
|
||||||
|
torchrun $DISTRIBUTED_ARGS finetune.py \
|
||||||
|
--model_name_or_path $MODEL \
|
||||||
|
--data_path $DATA \
|
||||||
|
--fp16 True \
|
||||||
|
--output_dir output_qwen \
|
||||||
|
--num_train_epochs 5 \
|
||||||
|
--per_device_train_batch_size 2 \
|
||||||
|
--per_device_eval_batch_size 1 \
|
||||||
|
--gradient_accumulation_steps 8 \
|
||||||
|
--evaluation_strategy "no" \
|
||||||
|
--save_strategy "steps" \
|
||||||
|
--save_steps 1000 \
|
||||||
|
--save_total_limit 10 \
|
||||||
|
--learning_rate 3e-4 \
|
||||||
|
--weight_decay 0.1 \
|
||||||
|
--adam_beta2 0.95 \
|
||||||
|
--warmup_ratio 0.01 \
|
||||||
|
--lr_scheduler_type "cosine" \
|
||||||
|
--logging_steps 1 \
|
||||||
|
--report_to "none" \
|
||||||
|
--model_max_length 512 \
|
||||||
|
--lazy_preprocess True \
|
||||||
|
--use_lora \
|
||||||
|
--q_lora \
|
||||||
|
--gradient_checkpointing \
|
||||||
|
--deepspeed finetune/ds_config_zero2.json
|
|
@ -0,0 +1,66 @@
|
||||||
|
#!/bin/bash
|
||||||
|
export CUDA_DEVICE_MAX_CONNECTIONS=1
|
||||||
|
DIR=`pwd`
|
||||||
|
|
||||||
|
MODEL="Qwen/Qwen-7B-Chat-Int4" # Set the path if you do not want to load from huggingface directly
|
||||||
|
# ATTENTION: specify the path to your training data, which should be a json file consisting of a list of conversations.
|
||||||
|
# See the section for finetuning in README for more information.
|
||||||
|
DATA="path_to_data"
|
||||||
|
|
||||||
|
function usage() {
|
||||||
|
echo '
|
||||||
|
Usage: bash finetune/finetune_qlora_single_gpu.sh [-m MODEL_PATH] [-d DATA_PATH]
|
||||||
|
'
|
||||||
|
}
|
||||||
|
|
||||||
|
while [[ "$1" != "" ]]; do
|
||||||
|
case $1 in
|
||||||
|
-m | --model )
|
||||||
|
shift
|
||||||
|
MODEL=$1
|
||||||
|
;;
|
||||||
|
-d | --data )
|
||||||
|
shift
|
||||||
|
DATA=$1
|
||||||
|
;;
|
||||||
|
-h | --help )
|
||||||
|
usage
|
||||||
|
exit 0
|
||||||
|
;;
|
||||||
|
* )
|
||||||
|
echo "Unknown argument ${1}"
|
||||||
|
exit 1
|
||||||
|
;;
|
||||||
|
esac
|
||||||
|
shift
|
||||||
|
done
|
||||||
|
|
||||||
|
export CUDA_VISIBLE_DEVICES=0
|
||||||
|
|
||||||
|
# Remember to use --fp16 instead of --bf16 due to autogptq
|
||||||
|
python finetune.py \
|
||||||
|
--model_name_or_path $MODEL \
|
||||||
|
--data_path $DATA \
|
||||||
|
--fp16 True \
|
||||||
|
--output_dir output_qwen \
|
||||||
|
--num_train_epochs 5 \
|
||||||
|
--per_device_train_batch_size 2 \
|
||||||
|
--per_device_eval_batch_size 1 \
|
||||||
|
--gradient_accumulation_steps 8 \
|
||||||
|
--evaluation_strategy "no" \
|
||||||
|
--save_strategy "steps" \
|
||||||
|
--save_steps 1000 \
|
||||||
|
--save_total_limit 10 \
|
||||||
|
--learning_rate 3e-4 \
|
||||||
|
--weight_decay 0.1 \
|
||||||
|
--adam_beta2 0.95 \
|
||||||
|
--warmup_ratio 0.01 \
|
||||||
|
--lr_scheduler_type "cosine" \
|
||||||
|
--logging_steps 1 \
|
||||||
|
--report_to "none" \
|
||||||
|
--model_max_length 512 \
|
||||||
|
--lazy_preprocess True \
|
||||||
|
--gradient_checkpointing \
|
||||||
|
--use_lora \
|
||||||
|
--q_lora \
|
||||||
|
--deepspeed finetune/ds_config_zero2.json
|
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue