|
|
@ -1,11 +1,10 @@
|
|
|
|
# Copyright (c) Alibaba Cloud.
|
|
|
|
|
|
|
|
#
|
|
|
|
|
|
|
|
# This source code is licensed under the license found in the
|
|
|
|
|
|
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy
|
|
|
|
import copy
|
|
|
|
import math
|
|
|
|
import math
|
|
|
|
import inspect
|
|
|
|
import inspect
|
|
|
|
|
|
|
|
import os
|
|
|
|
|
|
|
|
import gc
|
|
|
|
|
|
|
|
from tqdm import auto as tqdm_lib
|
|
|
|
|
|
|
|
import json
|
|
|
|
from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List, Any, Generator
|
|
|
|
from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List, Any, Generator
|
|
|
|
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch
|
|
|
@ -37,6 +36,11 @@ from qwen_generation_utils import (
|
|
|
|
StopWordsLogitsProcessor,
|
|
|
|
StopWordsLogitsProcessor,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from safetensors import safe_open
|
|
|
|
|
|
|
|
from safetensors.torch import load_file as safe_load_file
|
|
|
|
|
|
|
|
from safetensors.torch import save_file as safe_save_file
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import sys
|
|
|
|
import sys
|
|
|
|
|
|
|
|
|
|
|
|
sys.path.append("..")
|
|
|
|
sys.path.append("..")
|
|
|
@ -96,7 +100,6 @@ class QWenAttention(nn.Module):
|
|
|
|
self,
|
|
|
|
self,
|
|
|
|
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
|
|
|
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
|
|
|
rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
|
|
|
|
rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
|
|
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
|
|
|
|
):
|
|
|
|
):
|
|
|
|
mixed_x_layer = self.c_attn(hidden_states)
|
|
|
|
mixed_x_layer = self.c_attn(hidden_states)
|
|
|
|
query, key, value = mixed_x_layer.split(self.split_size, dim=2)
|
|
|
|
query, key, value = mixed_x_layer.split(self.split_size, dim=2)
|
|
|
@ -120,32 +123,21 @@ class QWenAttention(nn.Module):
|
|
|
|
query = query * logn_tensor.expand_as(query)
|
|
|
|
query = query * logn_tensor.expand_as(query)
|
|
|
|
|
|
|
|
|
|
|
|
key_size = key.size(1)
|
|
|
|
key_size = key.size(1)
|
|
|
|
if query.size(1) == key_size:
|
|
|
|
causal_mask = torch.tril(torch.ones((key_size, key_size), dtype=torch.bool, device=query.device)).view(
|
|
|
|
causal_mask = torch.tril(torch.ones((key_size, key_size), dtype=torch.bool, device=query.device)).view(
|
|
|
|
1, 1, key_size, key_size
|
|
|
|
1, 1, key_size, key_size
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
causal_mask = None
|
|
|
|
|
|
|
|
query = query.permute(0, 2, 1, 3)
|
|
|
|
query = query.permute(0, 2, 1, 3)
|
|
|
|
key = key.permute(0, 2, 1, 3)
|
|
|
|
key = key.permute(0, 2, 1, 3)
|
|
|
|
value = value.permute(0, 2, 1, 3)
|
|
|
|
value = value.permute(0, 2, 1, 3)
|
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None:
|
|
|
|
|
|
|
|
attention_mask = attention_mask.expand(-1, -1, causal_mask.size(2), -1)
|
|
|
|
|
|
|
|
if causal_mask is not None:
|
|
|
|
|
|
|
|
attention_mask = attention_mask.masked_fill(~causal_mask, torch.finfo(query.dtype).min)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
attention_mask = causal_mask
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# qk = query @ key.transpose(-2, -1)
|
|
|
|
# qk = query @ key.transpose(-2, -1)
|
|
|
|
# qk = qk[0]
|
|
|
|
# qk = qk[0]
|
|
|
|
# show.DumpTensorToImage(qk,"q_matmul_k_layer_"+str(self.index)+".png")
|
|
|
|
# prePath = "../generated/query_matmul_key/img/"
|
|
|
|
# print("layer:" + str(self.index) + " query.shape:"+ str(query.shape))
|
|
|
|
# show.DumpTensorToImage(
|
|
|
|
# print("layer:" + str(self.index) + " key.shape:"+ str(key.shape))
|
|
|
|
# qk, prePath + "q_matmul_k_sequence_" + str(key_size) + "_layer_" + str(self.index) + ".png"
|
|
|
|
# print("layer:" + str(self.index) + " value.shape:"+ str(value.shape))
|
|
|
|
# )
|
|
|
|
# print("\n")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
attn_output = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask).transpose(1, 2)
|
|
|
|
attn_output = F.scaled_dot_product_attention(query, key, value, attn_mask=causal_mask).transpose(1, 2)
|
|
|
|
context_layer = self._merge_heads(attn_output, self.num_heads, self.head_dim)
|
|
|
|
context_layer = self._merge_heads(attn_output, self.num_heads, self.head_dim)
|
|
|
|
attn_output = self.c_proj(context_layer)
|
|
|
|
attn_output = self.c_proj(context_layer)
|
|
|
|
|
|
|
|
|
|
|
@ -189,15 +181,10 @@ class QWenBlock(nn.Module):
|
|
|
|
self,
|
|
|
|
self,
|
|
|
|
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
|
|
|
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
|
|
|
rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
|
|
|
|
rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
|
|
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
|
|
|
|
):
|
|
|
|
):
|
|
|
|
layernorm_output = self.ln_1(hidden_states)
|
|
|
|
layernorm_output = self.ln_1(hidden_states)
|
|
|
|
|
|
|
|
|
|
|
|
attn_outputs = self.attn(
|
|
|
|
attn_outputs = self.attn(layernorm_output, rotary_pos_emb_list)
|
|
|
|
layernorm_output,
|
|
|
|
|
|
|
|
rotary_pos_emb_list,
|
|
|
|
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
attn_output = attn_outputs[0]
|
|
|
|
attn_output = attn_outputs[0]
|
|
|
|
residual = hidden_states
|
|
|
|
residual = hidden_states
|
|
|
|
layernorm_input = attn_output + residual
|
|
|
|
layernorm_input = attn_output + residual
|
|
|
@ -209,7 +196,7 @@ class QWenBlock(nn.Module):
|
|
|
|
return hidden_states
|
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class QWenPreTrainedModel(PreTrainedModel):
|
|
|
|
class QWenPreTrainedModel(nn.Module):
|
|
|
|
config_class = QWenConfig
|
|
|
|
config_class = QWenConfig
|
|
|
|
base_model_prefix = "transformer"
|
|
|
|
base_model_prefix = "transformer"
|
|
|
|
is_parallelizable = False
|
|
|
|
is_parallelizable = False
|
|
|
@ -217,7 +204,7 @@ class QWenPreTrainedModel(PreTrainedModel):
|
|
|
|
_no_split_modules = ["QWenBlock"]
|
|
|
|
_no_split_modules = ["QWenBlock"]
|
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, *inputs, **kwargs):
|
|
|
|
def __init__(self, *inputs, **kwargs):
|
|
|
|
super().__init__(*inputs, **kwargs)
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class QWenModel(QWenPreTrainedModel):
|
|
|
|
class QWenModel(QWenPreTrainedModel):
|
|
|
@ -248,8 +235,6 @@ class QWenModel(QWenPreTrainedModel):
|
|
|
|
eps=config.layer_norm_epsilon,
|
|
|
|
eps=config.layer_norm_epsilon,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
self.post_init()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_ntk_alpha(self, true_seq_len):
|
|
|
|
def get_ntk_alpha(self, true_seq_len):
|
|
|
|
context_value = math.log(true_seq_len / self.seq_length, 2) + 1
|
|
|
|
context_value = math.log(true_seq_len / self.seq_length, 2) + 1
|
|
|
|
ntk_alpha = 2 ** math.ceil(context_value) - 1
|
|
|
|
ntk_alpha = 2 ** math.ceil(context_value) - 1
|
|
|
@ -259,8 +244,6 @@ class QWenModel(QWenPreTrainedModel):
|
|
|
|
def forward(
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
self,
|
|
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
|
|
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
|
|
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
):
|
|
|
|
):
|
|
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
|
@ -275,14 +258,6 @@ class QWenModel(QWenPreTrainedModel):
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
|
|
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None:
|
|
|
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, -1)
|
|
|
|
|
|
|
|
attention_mask = attention_mask[:, None, None, :]
|
|
|
|
|
|
|
|
attention_mask = attention_mask.to(dtype=self.dtype)
|
|
|
|
|
|
|
|
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if inputs_embeds is None:
|
|
|
|
if inputs_embeds is None:
|
|
|
|
inputs_embeds = self.wte(input_ids)
|
|
|
|
inputs_embeds = self.wte(input_ids)
|
|
|
|
hidden_states = inputs_embeds
|
|
|
|
hidden_states = inputs_embeds
|
|
|
@ -295,15 +270,8 @@ class QWenModel(QWenPreTrainedModel):
|
|
|
|
ntk_alpha_list = self.rotary_emb._ntk_alpha_cached_list
|
|
|
|
ntk_alpha_list = self.rotary_emb._ntk_alpha_cached_list
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
ntk_alpha_list = []
|
|
|
|
ntk_alpha_list = []
|
|
|
|
if attention_mask is not None and kv_seq_len > self.seq_length:
|
|
|
|
ntk_alpha = self.get_ntk_alpha(kv_seq_len)
|
|
|
|
true_seq_lens = attention_mask.squeeze(1).squeeze(1).eq(0).sum(dim=-1, dtype=torch.int32)
|
|
|
|
ntk_alpha_list.append(ntk_alpha)
|
|
|
|
for i in range(hidden_states.size()[0]):
|
|
|
|
|
|
|
|
true_seq_len = true_seq_lens[i].item()
|
|
|
|
|
|
|
|
ntk_alpha = self.get_ntk_alpha(true_seq_len)
|
|
|
|
|
|
|
|
ntk_alpha_list.append(ntk_alpha)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
ntk_alpha = self.get_ntk_alpha(kv_seq_len)
|
|
|
|
|
|
|
|
ntk_alpha_list.append(ntk_alpha)
|
|
|
|
|
|
|
|
self.rotary_emb._ntk_alpha_cached_list = ntk_alpha_list
|
|
|
|
self.rotary_emb._ntk_alpha_cached_list = ntk_alpha_list
|
|
|
|
rotary_pos_emb_list = [self.rotary_emb(kv_seq_len, ntk_alpha=ntk_alpha) for ntk_alpha in ntk_alpha_list]
|
|
|
|
rotary_pos_emb_list = [self.rotary_emb(kv_seq_len, ntk_alpha=ntk_alpha) for ntk_alpha in ntk_alpha_list]
|
|
|
|
|
|
|
|
|
|
|
@ -312,52 +280,34 @@ class QWenModel(QWenPreTrainedModel):
|
|
|
|
|
|
|
|
|
|
|
|
all_hidden_states = None
|
|
|
|
all_hidden_states = None
|
|
|
|
for block in self.h:
|
|
|
|
for block in self.h:
|
|
|
|
hidden_states = block(
|
|
|
|
hidden_states = block(hidden_states, rotary_pos_emb_list=rotary_pos_emb_list)
|
|
|
|
hidden_states,
|
|
|
|
|
|
|
|
rotary_pos_emb_list=rotary_pos_emb_list,
|
|
|
|
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hidden_states = self.ln_f(hidden_states)
|
|
|
|
hidden_states = self.ln_f(hidden_states)
|
|
|
|
hidden_states = hidden_states.view(output_shape)
|
|
|
|
hidden_states = hidden_states.view(output_shape)
|
|
|
|
return BaseModelOutputWithPast(last_hidden_state=hidden_states, hidden_states=all_hidden_states)
|
|
|
|
return BaseModelOutputWithPast(last_hidden_state=hidden_states, hidden_states=all_hidden_states)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class QWenLMHeadModel(QWenPreTrainedModel):
|
|
|
|
class QWenLMHeadModel(nn.Module):
|
|
|
|
def __init__(self, config):
|
|
|
|
def __init__(self, config):
|
|
|
|
super().__init__(config)
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
self.config = config
|
|
|
|
|
|
|
|
|
|
|
|
self.transformer = QWenModel(config)
|
|
|
|
self.transformer = QWenModel(config)
|
|
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
|
|
self.post_init()
|
|
|
|
self.generation_config = GenerationConfig.from_model_config(config)
|
|
|
|
|
|
|
|
|
|
|
|
def prepare_inputs_for_generation(self, input_ids, inputs_embeds=None, **kwargs):
|
|
|
|
def prepare_inputs_for_generation(self, input_ids, inputs_embeds=None, **kwargs):
|
|
|
|
if input_ids.size(0) == 1:
|
|
|
|
|
|
|
|
attention_mask = None
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
attention_mask = kwargs.get("attention_mask", None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model_inputs = {"input_ids": input_ids}
|
|
|
|
model_inputs = {"input_ids": input_ids}
|
|
|
|
|
|
|
|
|
|
|
|
model_inputs.update(
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
"attention_mask": attention_mask,
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
return model_inputs
|
|
|
|
return model_inputs
|
|
|
|
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
self,
|
|
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
|
|
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
|
|
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
labels: Optional[torch.LongTensor] = None,
|
|
|
|
labels: Optional[torch.LongTensor] = None,
|
|
|
|
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
|
|
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
|
|
transformer_outputs = self.transformer(
|
|
|
|
transformer_outputs = self.transformer(
|
|
|
|
input_ids,
|
|
|
|
input_ids,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
|
|
|
|
head_mask=head_mask,
|
|
|
|
|
|
|
|
inputs_embeds=inputs_embeds,
|
|
|
|
inputs_embeds=inputs_embeds,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
hidden_states = transformer_outputs[0]
|
|
|
|
hidden_states = transformer_outputs[0]
|
|
|
@ -387,6 +337,59 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|
|
|
attentions=transformer_outputs.attentions,
|
|
|
|
attentions=transformer_outputs.attentions,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]]):
|
|
|
|
|
|
|
|
load_in_8bit = False
|
|
|
|
|
|
|
|
load_in_4bit = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
|
|
|
|
|
|
|
|
resolved_archive_file = os.path.join(pretrained_model_name_or_path, "model.safetensors.index.json")
|
|
|
|
|
|
|
|
print(f"loading weights file {resolved_archive_file}")
|
|
|
|
|
|
|
|
with open(resolved_archive_file, "r") as f:
|
|
|
|
|
|
|
|
index = json.loads(f.read())
|
|
|
|
|
|
|
|
shard_filenames = sorted(set(index["weight_map"].values()))
|
|
|
|
|
|
|
|
resolved_archive_file = [os.path.join(pretrained_model_name_or_path, f) for f in shard_filenames]
|
|
|
|
|
|
|
|
model = cls._load_pretrained_model(resolved_archive_file)
|
|
|
|
|
|
|
|
model.is_loaded_in_4bit = load_in_4bit
|
|
|
|
|
|
|
|
model.is_loaded_in_8bit = load_in_8bit
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _load_state_dict_into_model(self, model_to_load, state_dict, start_prefix):
|
|
|
|
|
|
|
|
metadata = getattr(state_dict, "_metadata", None)
|
|
|
|
|
|
|
|
state_dict = state_dict.copy()
|
|
|
|
|
|
|
|
if metadata is not None:
|
|
|
|
|
|
|
|
state_dict._metadata = metadata
|
|
|
|
|
|
|
|
error_msgs = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def load(module: nn.Module, state_dict, prefix=""):
|
|
|
|
|
|
|
|
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
|
|
|
|
|
|
|
|
args = (state_dict, prefix, local_metadata, True, [], [], error_msgs)
|
|
|
|
|
|
|
|
if len([key for key in state_dict if key.startswith(prefix)]) > 0:
|
|
|
|
|
|
|
|
module._load_from_state_dict(*args)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for name, child in module._modules.items():
|
|
|
|
|
|
|
|
if child is not None:
|
|
|
|
|
|
|
|
load(child, state_dict, prefix + name + ".")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
load(model_to_load, state_dict, prefix=start_prefix)
|
|
|
|
|
|
|
|
del state_dict
|
|
|
|
|
|
|
|
return error_msgs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _load_pretrained_model(cls, resolved_archive_file):
|
|
|
|
|
|
|
|
start_prefix = ""
|
|
|
|
|
|
|
|
model_to_load = cls
|
|
|
|
|
|
|
|
error_msgs = []
|
|
|
|
|
|
|
|
if len(resolved_archive_file) > 1:
|
|
|
|
|
|
|
|
resolved_archive_file = tqdm_lib.tqdm(resolved_archive_file, desc="Loading checkpoint shards")
|
|
|
|
|
|
|
|
for shard_file in resolved_archive_file:
|
|
|
|
|
|
|
|
state_dict = safe_load_file(shard_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
error_msgs += cls._load_state_dict_into_model(model_to_load, state_dict, start_prefix)
|
|
|
|
|
|
|
|
del state_dict # force memory release
|
|
|
|
|
|
|
|
gc.collect()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print(f"All model checkpoint weights were used when initializing {cls.__class__.__name__}.\n")
|
|
|
|
|
|
|
|
return cls
|
|
|
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
@torch.no_grad()
|
|
|
|
def chat(
|
|
|
|
def chat(
|
|
|
|
self,
|
|
|
|
self,
|
|
|
@ -406,18 +409,14 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|
|
|
|
|
|
|
|
|
|
|
stop_words_ids = []
|
|
|
|
stop_words_ids = []
|
|
|
|
|
|
|
|
|
|
|
|
max_window_size = kwargs.get("max_window_size", None)
|
|
|
|
raw_text, context_tokens = make_context(tokenizer, query, query_assistant, history=history, system=system)
|
|
|
|
if max_window_size is None:
|
|
|
|
|
|
|
|
max_window_size = generation_config.max_window_size
|
|
|
|
|
|
|
|
raw_text, context_tokens = make_context(
|
|
|
|
|
|
|
|
tokenizer, query, query_assistant, history=history, system=system, max_window_size=max_window_size
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stop_words_ids.extend([[tokenizer.im_end_id], [tokenizer.im_start_id]])
|
|
|
|
stop_words_ids.extend([[tokenizer.im_end_id], [tokenizer.im_start_id]])
|
|
|
|
input_ids = torch.tensor([context_tokens]).to(self.device)
|
|
|
|
input_ids = torch.tensor([context_tokens]).to(next(self.parameters()).device)
|
|
|
|
outputs = self.generate(
|
|
|
|
outputs = self.generate(
|
|
|
|
input_ids,
|
|
|
|
input_ids,
|
|
|
|
stop_words_ids=stop_words_ids,
|
|
|
|
stop_words_ids=stop_words_ids,
|
|
|
|
|
|
|
|
tokenizer=tokenizer,
|
|
|
|
**kwargs,
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
decoded, response, end_reason = decode_tokens(
|
|
|
|
decoded, response, end_reason = decode_tokens(
|
|
|
@ -432,110 +431,53 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|
|
|
|
|
|
|
|
|
|
|
def generate(
|
|
|
|
def generate(
|
|
|
|
self,
|
|
|
|
self,
|
|
|
|
inputs: Optional[torch.Tensor] = None,
|
|
|
|
input_ids: Optional[torch.Tensor] = None,
|
|
|
|
stop_words_ids=[],
|
|
|
|
stop_words_ids=[],
|
|
|
|
|
|
|
|
tokenizer=None,
|
|
|
|
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
|
|
|
|
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
|
|
|
|
**kwargs,
|
|
|
|
**kwargs,
|
|
|
|
) -> Union[GenerateOutput, torch.LongTensor]:
|
|
|
|
) -> Union[GenerateOutput, torch.LongTensor]:
|
|
|
|
generation_config = self.generation_config
|
|
|
|
generation_config = self.generation_config
|
|
|
|
|
|
|
|
|
|
|
|
# 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call
|
|
|
|
|
|
|
|
self._validate_model_class()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
generation_config = copy.deepcopy(generation_config)
|
|
|
|
generation_config = copy.deepcopy(generation_config)
|
|
|
|
model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs
|
|
|
|
model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs
|
|
|
|
generation_config.validate()
|
|
|
|
generation_config.validate()
|
|
|
|
self._validate_model_kwargs(model_kwargs.copy())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 2. Set generation parameters if not already defined
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if generation_config.pad_token_id is None and generation_config.eos_token_id is not None:
|
|
|
|
|
|
|
|
eos_token_id = generation_config.eos_token_id
|
|
|
|
|
|
|
|
if isinstance(eos_token_id, list):
|
|
|
|
|
|
|
|
eos_token_id = eos_token_id[0]
|
|
|
|
|
|
|
|
generation_config.pad_token_id = eos_token_id
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 3. Define model inputs
|
|
|
|
|
|
|
|
inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(
|
|
|
|
|
|
|
|
inputs, generation_config.bos_token_id, model_kwargs
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
# 4. Define other model kwargs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
accepts_attention_mask = "attention_mask" in set(inspect.signature(self.forward).parameters.keys())
|
|
|
|
|
|
|
|
requires_attention_mask = "encoder_outputs" not in model_kwargs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if model_kwargs.get("attention_mask", None) is None and requires_attention_mask and accepts_attention_mask:
|
|
|
|
|
|
|
|
model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation(
|
|
|
|
|
|
|
|
inputs_tensor,
|
|
|
|
|
|
|
|
generation_config.pad_token_id,
|
|
|
|
|
|
|
|
generation_config.eos_token_id,
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 5. Prepare `input_ids` which will be used for auto-regressive generation
|
|
|
|
|
|
|
|
input_ids = inputs_tensor if model_input_name == "input_ids" else model_kwargs.pop("input_ids")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 6. Prepare `max_length` depending on other stopping criteria.
|
|
|
|
|
|
|
|
input_ids_length = input_ids.shape[-1]
|
|
|
|
|
|
|
|
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
|
|
|
|
|
|
|
|
generation_config.max_length = generation_config.max_new_tokens + input_ids_length
|
|
|
|
|
|
|
|
self._validate_generated_length(generation_config, input_ids_length, has_default_max_length)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stop_words_logits_processor = StopWordsLogitsProcessor(
|
|
|
|
|
|
|
|
stop_words_ids=stop_words_ids,
|
|
|
|
|
|
|
|
eos_token_id=generation_config.eos_token_id,
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
logits_processor = LogitsProcessorList([stop_words_logits_processor])
|
|
|
|
|
|
|
|
logits_processor = self._get_logits_processor(
|
|
|
|
|
|
|
|
generation_config=generation_config,
|
|
|
|
|
|
|
|
input_ids_seq_length=input_ids_length,
|
|
|
|
|
|
|
|
encoder_input_ids=inputs_tensor,
|
|
|
|
|
|
|
|
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
|
|
|
|
|
|
|
logits_processor=logits_processor,
|
|
|
|
|
|
|
|
model_kwargs=model_kwargs,
|
|
|
|
|
|
|
|
negative_prompt_ids=None,
|
|
|
|
|
|
|
|
negative_prompt_attention_mask=None,
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 12. expand input_ids with `num_return_sequences` additional sequences per batch
|
|
|
|
|
|
|
|
input_ids, model_kwargs = self._expand_inputs_for_generation(
|
|
|
|
|
|
|
|
input_ids=input_ids,
|
|
|
|
|
|
|
|
expand_size=generation_config.num_return_sequences,
|
|
|
|
|
|
|
|
is_encoder_decoder=False,
|
|
|
|
|
|
|
|
**model_kwargs,
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 13. run sample
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pad_token_id = generation_config.pad_token_id
|
|
|
|
pad_token_id = generation_config.pad_token_id
|
|
|
|
eos_token_id_tensor = torch.tensor([generation_config.eos_token_id]).to(input_ids.device)
|
|
|
|
eos_token_id_tensor = torch.tensor([generation_config.eos_token_id]).to(input_ids.device)
|
|
|
|
|
|
|
|
|
|
|
|
# init values
|
|
|
|
|
|
|
|
stopping_criteria = self._get_stopping_criteria(
|
|
|
|
|
|
|
|
generation_config=generation_config, stopping_criteria=StoppingCriteriaList()
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logits_warper = self._get_logits_warper(generation_config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# init attention / hidden states / scores tuples
|
|
|
|
|
|
|
|
scores = None
|
|
|
|
scores = None
|
|
|
|
|
|
|
|
|
|
|
|
# keep track of which sequences are already finished
|
|
|
|
# keep track of which sequences are already finished
|
|
|
|
unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
|
|
|
|
unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
|
|
|
|
|
|
|
|
|
|
|
|
this_peer_finished = False
|
|
|
|
this_peer_finished = False
|
|
|
|
# auto-regressive generation
|
|
|
|
# auto-regressive generation
|
|
|
|
while True:
|
|
|
|
while True:
|
|
|
|
# prepare model inputs
|
|
|
|
|
|
|
|
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
|
|
|
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
# forward pass to get next token
|
|
|
|
# forward pass to get next token
|
|
|
|
outputs = self(**model_inputs)
|
|
|
|
outputs = self(**model_inputs)
|
|
|
|
|
|
|
|
|
|
|
|
next_token_scores = outputs.logits[:, -1, :]
|
|
|
|
next_token_scores = outputs.logits[:, -1, :]
|
|
|
|
|
|
|
|
|
|
|
|
# pre-process distribution
|
|
|
|
# repetition_penalty
|
|
|
|
next_token_scores = logits_processor(input_ids, next_token_scores)
|
|
|
|
penalty = self.config.repetition_penalty
|
|
|
|
next_token_scores = logits_warper(input_ids, next_token_scores)
|
|
|
|
score = torch.gather(next_token_scores, 1, input_ids)
|
|
|
|
|
|
|
|
# if score < 0 then repetition penalty has to be multiplied to reduce the token probabilities
|
|
|
|
|
|
|
|
score = torch.where(score < 0, score * penalty, score / penalty)
|
|
|
|
|
|
|
|
next_token_scores = next_token_scores.scatter_(1, input_ids, score)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# top_p
|
|
|
|
|
|
|
|
top_p = self.config.top_p
|
|
|
|
|
|
|
|
filter_value = -float("Inf")
|
|
|
|
|
|
|
|
min_tokens_to_keep = 1
|
|
|
|
|
|
|
|
sorted_logits, sorted_indices = torch.sort(next_token_scores, descending=False)
|
|
|
|
|
|
|
|
cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1)
|
|
|
|
|
|
|
|
# Remove tokens with cumulative top_p above the threshold (token with 0 are kept)
|
|
|
|
|
|
|
|
sorted_indices_to_remove = cumulative_probs <= (1 - top_p)
|
|
|
|
|
|
|
|
# Keep at least min_tokens_to_keep
|
|
|
|
|
|
|
|
sorted_indices_to_remove[..., -min_tokens_to_keep:] = 0
|
|
|
|
|
|
|
|
# scatter sorted tensors to original indexing
|
|
|
|
|
|
|
|
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
|
|
|
|
|
|
|
|
next_token_scores = next_token_scores.masked_fill(indices_to_remove, filter_value)
|
|
|
|
|
|
|
|
|
|
|
|
# sample
|
|
|
|
# sample
|
|
|
|
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
|
|
|
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
|
|
@ -545,20 +487,24 @@ class QWenLMHeadModel(QWenPreTrainedModel):
|
|
|
|
|
|
|
|
|
|
|
|
# update generated ids, model inputs, and length for next step
|
|
|
|
# update generated ids, model inputs, and length for next step
|
|
|
|
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
|
|
|
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
|
|
|
model_kwargs = self._update_model_kwargs_for_generation(outputs, model_kwargs, is_encoder_decoder=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
unfinished_sequences = unfinished_sequences.mul(
|
|
|
|
unfinished_sequences = unfinished_sequences.mul(
|
|
|
|
next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
|
|
|
|
next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# decoded, response, end_reason = decode_tokens(
|
|
|
|
|
|
|
|
# next_tokens,
|
|
|
|
|
|
|
|
# tokenizer,
|
|
|
|
|
|
|
|
# raw_text_len=0,
|
|
|
|
|
|
|
|
# context_length=0,
|
|
|
|
|
|
|
|
# errors="replace",
|
|
|
|
|
|
|
|
# )
|
|
|
|
|
|
|
|
# print(decoded)
|
|
|
|
|
|
|
|
|
|
|
|
# stop when each sentence is finished
|
|
|
|
# stop when each sentence is finished
|
|
|
|
if unfinished_sequences.max() == 0:
|
|
|
|
if unfinished_sequences.max() == 0:
|
|
|
|
this_peer_finished = True
|
|
|
|
this_peer_finished = True
|
|
|
|
|
|
|
|
|
|
|
|
# stop if we exceed the maximum length
|
|
|
|
|
|
|
|
if stopping_criteria(input_ids, scores):
|
|
|
|
|
|
|
|
this_peer_finished = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if this_peer_finished:
|
|
|
|
if this_peer_finished:
|
|
|
|
break
|
|
|
|
break
|
|
|
|
return input_ids
|
|
|
|
return input_ids
|
|
|
|