Compare commits

...

3 Commits

Author SHA1 Message Date
Colin d1906629ab Enable wit train on cutome dataset and loss down. 2024-02-26 22:44:26 +08:00
Colin 1ef3e419cb Add custom dataset support. 2024-02-26 22:44:26 +08:00
Colin e5f97af291 Add wit train support. 2024-02-26 22:44:26 +08:00
6 changed files with 296 additions and 16 deletions

3
.gitignore vendored
View File

@ -1,4 +1,5 @@
__pycache__
.vscode
*.txt
temp
temp
lightning_logs

View File

@ -1,5 +0,0 @@
from datasets import load_dataset
dataset = load_dataset("liwu/MNBVC", "wikipedia", split="train", streaming=True)
print(next(iter(dataset))) # get the first line

101
wit/lit_module.py Normal file
View File

@ -0,0 +1,101 @@
from functools import cache
from typing import Dict, Optional
import pytorch_lightning as pl
import torch
import torchmetrics
# from utils import init_model
# from custom_models.gpt2.modeling_gpt2 import GPT2LMHeadModel
from modeling_wit import QWenLMHeadModel
from configuration_qwen import QWenConfig
from transformers import AutoConfig
class LitModule(pl.LightningModule):
def __init__(
self,
model_dir: str,
learning_rate: float = 0.0001,
use_tril_attention_mask: str = False,
):
super().__init__()
self.save_hyperparameters()
config = QWenConfig()
model = QWenLMHeadModel(config)
model = model.from_pretrained(model_dir)
self.llm = self.register_core_module(model)
self.learning_rate = learning_rate
self.use_tril_attention_mask = use_tril_attention_mask
self.metric_loss = torchmetrics.MeanMetric()
self.metric_accuracy = torchmetrics.Accuracy(
task="multiclass",
num_classes=self.llm.config.vocab_size,
)
@cache
def get_batch_tril_matrix(self, block_size: int, batch_size: Optional[int] = None) -> torch.Tensor:
matrix = torch.ones(block_size, block_size).tril()
if batch_size is not None:
matrix = matrix.repeat(batch_size, 1, 1)
return matrix
def register_core_module(self, module: torch.nn.Module) -> torch.nn.Module:
object.__setattr__(self, "__core_module__", module)
return module
def training_step(self, batch: Dict[str, torch.Tensor], batch_idx):
batch_size, block_size = batch["input_ids"].shape
if self.use_tril_attention_mask:
batch["attention_mask"] = self.get_batch_tril_matrix(block_size, batch_size=batch_size).to(self.device)
outputs, loss = self.llm(**batch)
self.log("train_loss", loss, rank_zero_only=True)
return loss
def validation_step(self, batch: Dict[str, torch.Tensor], batch_idx):
outputs, loss = self.llm(**batch, return_dict=True)
logits = outputs[..., :-1, :]
labels = batch["labels"][..., 1:]
self.metric_loss.update(loss)
label_mask = labels != -100
self.metric_accuracy.update(logits[label_mask], labels[label_mask])
def on_validation_epoch_end(self) -> None:
self.log("val_loss", self.metric_loss, rank_zero_only=True)
self.log("accuracy", self.metric_accuracy, rank_zero_only=True)
def configure_optimizers(self):
strategy = self.trainer.strategy
if isinstance(strategy, pl.strategies.DeepSpeedStrategy):
assert "optimizer" not in strategy.config
zero_config = strategy.config.get("zero_optimization")
if zero_config is not None:
if "offload_optimizer" in zero_config:
import deepspeed
optimizer = deepspeed.ops.adam.DeepSpeedCPUAdam(
self.trainer.model.parameters(), lr=self.learning_rate
)
return optimizer
optimizer = torch.optim.AdamW(self.trainer.model.parameters(), lr=self.learning_rate)
return optimizer
def configure_callbacks(self):
checkpoint_callback = pl.callbacks.ModelCheckpoint(
monitor="accuracy",
mode="max",
filename="{epoch:02d}-{accuracy:.4f}",
)
early_stop_callback = pl.callbacks.EarlyStopping(
monitor="accuracy",
min_delta=0.001,
patience=3,
mode="max",
stopping_threshold=1,
)
return [checkpoint_callback]
# return [checkpoint_callback, early_stop_callback]

181
wit/lit_train.py Normal file
View File

@ -0,0 +1,181 @@
import argparse
from functools import partial
from itertools import chain
from typing import Dict, Tuple
import datasets
import pytorch_lightning as pl
import torch
from torch.utils.data import ConcatDataset, DataLoader, Dataset
from transformers import (
BatchEncoding,
DefaultDataCollator,
PreTrainedTokenizer,
set_seed,
)
from modelscope import snapshot_download
from lit_module import LitModule
from tokenization_qwen import QWenTokenizer
model_name = "qwen/Qwen-1_8B-Chat"
learning_rate = 0.0001
use_tril_attention_mask = None
precision = "32-true" # "precision:bf16-mixed,16-mixed,32-true"
tokenizer_name_or_path = None
dataset_name = ["/home/colin/develop/dataset/liwu/MNBVC/wiki"]
dataset_name = ["/home/colin/develop/dataset/liwu/MNBVC/wiki/20230198/58.jsonl.gz"]
train_batch_size = 256
val_batch_size = 16
limit_val_batches = 128
num_proc = 8
max_epochs = 1000
strategy = "fsdp"
resume_from_ckpt_path = None
seed = 42
class SpecialDataset(Dataset):
def __init__(self, size=65536):
self.size = size
self.features = []
a = torch.randint(0, 1024, [size])
self.data = torch.stack([a, a * 2, a * 3, a * 4]).permute(1, 0)
def __len__(self):
return self.size
def __getitem__(self, idx):
output = {}
data = self.data[idx]
output["input_ids"] = data
output["labels"] = data
output["token_type_ids"] = torch.zeros(data.shape)
return output
def split_raw_dataset(
raw_dataset: datasets.DatasetDict,
) -> Tuple[datasets.Dataset, datasets.Dataset]:
if "validation" in raw_dataset:
train_dataset, val_dataset = raw_dataset["train"], raw_dataset["validation"]
else:
raw_dataset = raw_dataset["train"].train_test_split(test_size=0.05, seed=seed)
train_dataset, val_dataset = raw_dataset["train"], raw_dataset["test"]
return train_dataset, val_dataset
def process_dataset(dataset: datasets.Dataset, tokenizer: PreTrainedTokenizer) -> datasets.Dataset:
def group_texts(examples: Dict[str, list], block_size: int = 512) -> BatchEncoding:
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
total_length = (total_length // block_size) * block_size
result = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
result["labels"] = result["input_ids"].copy()
result = BatchEncoding(result)
return result
def format_inputs(examples):
p = examples["段落"]
mergeLine = ""
for line in p:
mergeLine += line["内容"] + "\n"
return {"text": mergeLine}
def tokenize_inputs(
examples: Dict[str, list],
tokenizer: PreTrainedTokenizer,
column_name: str = "text",
) -> BatchEncoding:
logits = tokenizer(examples[column_name], return_attention_mask=False)
return logits
dataset_column_names = list(dataset.features)
dataset = dataset.map(
partial(format_inputs),
batched=False,
num_proc=num_proc,
remove_columns=dataset_column_names,
)
dataset_column_names = list(dataset.features)
dataset = dataset.map(
partial(tokenize_inputs, tokenizer=tokenizer),
batched=True,
num_proc=num_proc,
remove_columns=dataset_column_names,
)
dataset = dataset.map(
partial(group_texts, block_size=tokenizer.model_max_length),
batched=True,
num_proc=num_proc,
)
return dataset
if __name__ == "__main__":
if tokenizer_name_or_path is None:
tokenizer_name_or_path = model_name
set_seed(seed)
# lightning module
model_dir = snapshot_download(model_name)
lit_module = LitModule(model_dir, learning_rate, use_tril_attention_mask)
tokenizer = QWenTokenizer("./wit_b64.tiktoken", "./wit_char.tiktoken")
train_dataset_list = []
val_dataset_list = []
for dn in dataset_name:
datanames = dn.split(".")
if datanames[-1] == "gz" and datanames[-2] == "jsonl":
raw_dataset = datasets.load_dataset("json", data_files=dn)
elif datanames[-1] == "json":
raw_dataset = datasets.load_dataset("json", data_files=dn)
else:
raw_dataset = datasets.load_dataset(dn)
train_dataset, val_dataset = split_raw_dataset(raw_dataset)
train_dataset = process_dataset(train_dataset, tokenizer)
val_dataset = process_dataset(val_dataset, tokenizer)
train_dataset_list.append(train_dataset)
val_dataset_list.append(val_dataset)
train_dataset = ConcatDataset(train_dataset_list)
val_dataset = ConcatDataset(val_dataset_list)
train_dataset = SpecialDataset()
val_dataset = SpecialDataset()
train_dataloader = DataLoader(
train_dataset,
batch_size=train_batch_size,
num_workers=num_proc,
collate_fn=DefaultDataCollator(),
persistent_workers=True,
shuffle=True,
)
val_dataloader = DataLoader(
val_dataset,
batch_size=val_batch_size,
num_workers=num_proc,
collate_fn=DefaultDataCollator(),
persistent_workers=True,
shuffle=True,
)
torch.set_float32_matmul_precision("medium")
precision = precision
lit_trainer = pl.Trainer(
accelerator="gpu",
precision=precision,
strategy=strategy,
max_epochs=max_epochs,
limit_val_batches=limit_val_batches,
)
lit_trainer.fit(
lit_module,
train_dataloaders=train_dataloader,
val_dataloaders=val_dataloader,
ckpt_path=resume_from_ckpt_path,
)

View File

@ -137,6 +137,16 @@ class QWenLMHeadModel(nn.Module):
self.transformer = QWenModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
**kwargs,
):
runner = QwenRunner(self)
return runner.forwardQWen(input_ids, labels)
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]]):
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
resolved_archive_file = os.path.join(pretrained_model_name_or_path, "model.safetensors.index.json")
@ -343,15 +353,7 @@ class QwenRunner:
loss_fct = CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
# shift_labels = torch.ones([1,19]).to(lm_logits.device).to(torch.int64)
# shift_logits = lm_logits[..., :-1, :].contiguous()
# loss_fct = CrossEntropyLoss()
# loss = loss_fct(
# shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
# )
# loss.backward()
return lm_logits
return lm_logits, loss
def prepareInput(self, tokenizer, query, query_assistant, history, system):
return make_context(tokenizer, query, query_assistant, history=history, system=system)

View File

@ -63,7 +63,7 @@ class QWenTokenizer(PreTrainedTokenizer):
self.mergeable_ranks = _load_tiktoken_b64(vocab_file_b64)
self.mergeable_ranks.update(_load_tiktoken_char(vocab_file_char, len(self.mergeable_ranks)))
self.model_max_length = 1024
special = (
"user",
"assistant",