Make the error message a bit more verbose & it is cheaper to verify the elements rather than creating a (potentially) new type.
PiperOrigin-RevId: 363073909
This is the same as iota, but instead of taking the dimensions from the result
tensor we use the supplied shape extents tensor.
PiperOrigin-RevId: 362298548
This is an annoying edge case because the collapse->expand lowering expects at
least R1 or it will produce invalid linalg reshapes. Using the direct lowering
works fine.
PiperOrigin-RevId: 362269199
- Extract verification of source target pairs attached to collective permute into a common
helper function and use that to verify both MHLO and LMHLO variants.
- Change MlirGpuTestBase::ParseMlirModule to allow returning back a failure, and use
that to update the mlir_gpu_compile_test to check the new behavior.
PiperOrigin-RevId: 362156962
THe conversion from dot_general to dot fails when trying to retrieve
and use the precision config, since precision_config is optional.
PiperOrigin-RevId: 362095296
For now, the pass only reifies the required shape computations. Moving
broadcasts will follow to allow for fusion across them.
PiperOrigin-RevId: 362033715
Return nan at zeta poles or inf where the limit is defined. Also test the kernel
based on the series representation of zeta.
PiperOrigin-RevId: 361993482
Imported from GitHub PR https://github.com/tensorflow/tensorflow/pull/46723
Reduces some warnings about comparison of integers of different signs.
Copybara import of the project:
--
311f436f77b334f5462127d8cf179cce067969ca by Marius Brehler <marius.brehler@iml.fraunhofer.de>:
Adjust types of loop counters
Reduces some warnings about comparison of integers of different signs.
PiperOrigin-RevId: 360912203
For binary ops, we already special-case rank 0 vs rank 1, and same shape. So we
don't need to special-case a maximum rank of 1.
PiperOrigin-RevId: 360891955
For binary ops, we already special-case rank 0 vs rank 1, and same shape. So we
don't need to special-case a maximum rank of 1.
PiperOrigin-RevId: 360881387
The linalg named ops are now type polymorphic, so the type-monomorphic
varieties are redundant (and will be deleted soon).
PiperOrigin-RevId: 360509010
This op is useful for rank specialization of broadcasts. Kernel Generator
needs to generate one kernel for each rank, so if we can minimize the rank
of the broadcast shape, we can support more cases with the same number of
special-cased kernels.
PiperOrigin-RevId: 360137827
This pattern only works for normal convolutions. It does not work for depthwise
convolutions. The Linalg conv ops are defined with static rank, so it only
supports 1d/2d/3d cases, which are the most typical cases.
This also refactors out the same check in lmhlo.conv lowering.
PiperOrigin-RevId: 359503527
- XLA:HLO -> LMHLO conversion drops all token arguments and return values, however
custom calls that users write still expect to get buffer pointers for these token types.
- To be able to support this, add an optional call target argument mapping attribute to
LMHLO custom calls. When this attribute is present, it indicates the number of
arguments and returns that the custom call expects and also indicates which LMHLO
arg() or output() maps to which arg or result number of the custom call.
PiperOrigin-RevId: 358826664
This just blows up everything to ranked (up to 6) and is probably quite slow.
This is sufficient to make kernelgen compile SelectV2.
PiperOrigin-RevId: 358777728
Verification of HLO_BroadcastInDimOp was previously failing or crashing if the
operand had a dynamic shape or was unranked. Update the verification code to
allow the operand to be unranked or have dynamic shape.
PiperOrigin-RevId: 358056793
A shape that contains exactly one element is effectively a scalar. This leads
to a speedup in cases where we have a binary op with one operand that is
effectively a scalar, because we can use the fast path.
PiperOrigin-RevId: 357515552
This is being done by just removing the approximation and lowering to atan2 lib calls later to make the implementation the same as XLA. Note that if the approximation is brought back later, it can be fixed by changing the IR checking `less-than(X, 0)` to `less-than(copysign(X, 1), 0)`
PiperOrigin-RevId: 356253941
- Use a common base class to for AllReduce, AllGather, and AllToAll in the ODS spec.
- Add basic verification for replica groups attribute.
PiperOrigin-RevId: 354969654
In IREE, we use indexed generic op to handle the initial value. However, we
lower it to a generic op that carries an init_tensor here, and leave the handle
of initialization problem to later passes.
PiperOrigin-RevId: 354294807
If mhlo.reshape is not purely collapsing some consecutive operand
dimensions into result dimensions, we will generate two linalg
reshape op for it: the first one collapses all operand dimensions
into one dimension, and the second one expands it to all result
dimensions. For this case, the number of collapsed/expanded dimensions
should be coming strictly from the operand/result. It is different
from the case where we can generate one linalg reshape. For that case,
the reassociation map should have rank equal to the largest among
operand/result shape.
PiperOrigin-RevId: 354293826
Also generate the kernels for all types of casts between signed int and float types.
This requires some adaptations to our build macros so that we can also specify the
output type of a kernel.
PiperOrigin-RevId: 354067727
Allow for relative tolerance in unary kernel tests. In case of the cosh kernels,
this allows to accept an observed difference of 5.6e-8 between the kernel and
the `std::cosh` reference (32829984.568665262 vs. 32829984.568665318) in one of
the test cases.
PiperOrigin-RevId: 351983698
We prototyped the lowering from mhlo.dot to linalg.matmul in IREE. Since Linalg
now supports matmul in tensors world, we can move the lowering logic to tensors
world, and upstream to legalize_to_linalg.cc. The patch lowers the mhlo.dot to
the linalg.matmul/matvec/dot in tensors world.
PiperOrigin-RevId: 351184911
This updates the tests to no longer rely on tensor_store. Once all users of this behavior have adopted, the tensor_store support will be removed.
PiperOrigin-RevId: 348624899
For floating point operations, this uses std.pow.
For integer operations, this lowers to a loop.
This adds a dependency on scf.
PiperOrigin-RevId: 348537232
These are failing for complex types. Complex types require special handling. We have a fallback lowering for these ops so we can disable complex element types for now.
PiperOrigin-RevId: 348205002
Shape inference in case of ops with complex element types need to use the element type of complex as the result element type and not the full operand type.
Before:
"mhlo.abs"(%arg0) : (tensor<4xcomplex<f32>>) -> tensor<4xtensor<4xcomplex<f32>>>
After:
"mhlo.abs"(%arg0) : (tensor<4xcomplex<f32>>) -> tensor<4xf32>
PiperOrigin-RevId: 348123967
It can happen that a lowering for a certain type is not implemented yet.
We should not segfault in such a case, but instead return a failure().
PiperOrigin-RevId: 347801106
- Add this attribute to match the corresponding XLA HLO attribute on convolution
operations.
- A true value indicates a reversal of the corresponding kernel spatial dimension.
- Since XLA builder does not support this attribute, use a custom HLO converted to map
from mlir::mhlo::ConvOp to XLA.
PiperOrigin-RevId: 346891737
Casting negative s32 number to u64 directly will have leading 1s in the representation which is not what we want to get a single u64 out of two s32 seeds. Fixed this by first getting unsigned number of the same bit-width.
PiperOrigin-RevId: 345902167
Two tensors having the same SSA-value isn't sufficient for equality for floating types, as `NaN != NaN`. As written this causes `tf.IsNan` to [miscompile](https://github.com/google/iree/issues/4061).
PiperOrigin-RevId: 345730640
Casting negative s32 number to u64 directly will have leading 1s in the representation which is not what we want to get a single u64 out of two s32 seeds. Fixed this by first getting unsigned number of the same bit-width.
PiperOrigin-RevId: 345618958
Casting negative s32 number to u64 directly will have leading 1s in the representation which is not what we want to get a single u64 out of two s32 seeds. Fixed this by first getting unsigned number of the same bit-width.
PiperOrigin-RevId: 345605910
- Split out enum definitions in hlo dialect into a separate .td file (similar to structs)
and generate enum decl/defs for these enums.
- Also split out the LHLO GPU enums into a separate .td file and generate enum
decl/defs for these enums as well.
- Remove unused dialect from ConvolutionAttributes and generate lhlo_gpu enums.
- Add appropriate namespace for all the enums.
PiperOrigin-RevId: 345277240
Casting negative s32 number to u64 directly will have leading 1s in the representation which is not what we want to get a single u64 out of two s32 seeds. Fixed this by first getting unsigned number of the same bit-width.
PiperOrigin-RevId: 345239817
Casting negative s32 number to u64 directly will have leading 1s in the representation which is not what we want to get a single u64 out of two s32 seeds. Fixed this by first getting unsigned number of the same bit-width.
PiperOrigin-RevId: 345227848
Use constant to generate the correct assertion message. This avoids
confusion when lowering the max rank specialization for debugging.
PiperOrigin-RevId: 344769021