onnx-mlir/src/dialect/onnx/onnx_ops.cpp

545 lines
20 KiB
C++
Raw Normal View History

//===- onnx_ops.cpp - MLIR ONNX Operations --------------------------------===//
//
// Copyright 2019 The IBM Research Authors.
//
// =============================================================================
//
// This file defines ONNX operations in the MLIR operation set.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Traits.h"
#include "mlir/IR/Block.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallBitVector.h"
#include "onnx_ops.hpp"
using namespace mlir;
using namespace mlir::OpTrait::util;
//===----------------------------------------------------------------------===//
// ONNXOpsDialect
//===----------------------------------------------------------------------===//
/// Dialect creation, the instance will be owned by the context. This is the
/// point of registration of custom types and operations for the dialect.
ONNXOpsDialect::ONNXOpsDialect(mlir::MLIRContext *ctx)
: mlir::Dialect(getDialectNamespace(), ctx) {
addOperations<
#define GET_OP_LIST
2019-12-23 13:13:52 +08:00
#include "src/onnx.cpp.inc"
>();
}
void ONNXEntryPointOp::build(mlir::Builder *builder,
mlir::OperationState &state, mlir::FuncOp function,
int numInputs, int numOutputs) {
state.addAttribute(ONNXEntryPointOp::getEntryPointFuncAttrName(),
builder->getSymbolRefAttr(function));
state.addAttribute(ONNXEntryPointOp::getNumInputsAttrName(),
builder->getI32IntegerAttr(numInputs));
state.addAttribute(ONNXEntryPointOp::getNumOutputsAttrName(),
builder->getI32IntegerAttr(numOutputs));
}
ONNXEntryPointOp ONNXEntryPointOp::create(mlir::Location location,
mlir::FuncOp &func, int numInputs,
int numOutputs) {
mlir::OperationState state(location, "onnx.EntryPoint");
Builder builder(location->getContext());
mlir::ONNXEntryPointOp::build(&builder, state, func, numInputs, numOutputs);
Operation *op = mlir::Operation::create(state);
auto onnxEntryOp = llvm::cast<mlir::ONNXEntryPointOp>(op);
return onnxEntryOp;
}
//===----------------------------------------------------------------------===//
// ONNX Operations
//===----------------------------------------------------------------------===//
// Exp
/// Infer the output shape of the ONNXExpOp. This method is required by the
/// shape inference interface.
2020-01-14 01:21:29 +08:00
void ONNXExpOp::inferShapes() { getResult().setType(getOperand().getType()); }
//===----------------------------------------------------------------------===//
// Tanh
/// Infer the output shape of the ONNXTanhOp. This method is required by the
/// shape inference interface.
void ONNXTanhOp::inferShapes() {
2020-01-14 01:21:29 +08:00
getResult().setType(getOperand().getType());
}
//===----------------------------------------------------------------------===//
// Sinh
/// Infer the output shape of the ONNXSinhOp. This method is required by the
/// shape inference interface.
void ONNXSinhOp::inferShapes() {
2020-01-14 01:21:29 +08:00
getResult().setType(getOperand().getType());
}
//===----------------------------------------------------------------------===//
// Cosh
/// Infer the output shape of the ONNXCoshOp. This method is required by the
/// shape inference interface.
void ONNXCoshOp::inferShapes() {
2020-01-14 01:21:29 +08:00
getResult().setType(getOperand().getType());
}
//===----------------------------------------------------------------------===//
// Cos
/// Infer the output shape of the ONNXCosOp. This method is required by the
/// shape inference interface.
2020-01-14 01:21:29 +08:00
void ONNXCosOp::inferShapes() { getResult().setType(getOperand().getType()); }
//===----------------------------------------------------------------------===//
// Log
/// Infer the output shape of the ONNXLogOp. This method is required by the
/// shape inference interface.
2020-01-14 01:21:29 +08:00
void ONNXLogOp::inferShapes() { getResult().setType(getOperand().getType()); }
//===----------------------------------------------------------------------===//
// HardSigmoid
/// Infer the output shape of the ONNXHardSigmoidOp. This method is required by
/// the shape inference interface.
void ONNXHardSigmoidOp::inferShapes() {
2020-01-14 01:21:29 +08:00
getResult().setType(getOperand().getType());
}
//===----------------------------------------------------------------------===//
// Sigmoid
/// Infer the output shape of the ONNXSigmoidOp. This method is required by the
/// shape inference interface.
void ONNXSigmoidOp::inferShapes() {
2020-01-14 01:21:29 +08:00
getResult().setType(getOperand().getType());
}
//===----------------------------------------------------------------------===//
// Elu
/// Infer the output shape of the ONNXEluOp. This method is required by the
/// shape inference interface.
2020-01-14 01:21:29 +08:00
void ONNXEluOp::inferShapes() { getResult().setType(getOperand().getType()); }
//===----------------------------------------------------------------------===//
// Relu
/// Infer the output shape of the ONNXReluOp. This method is required by the
/// shape inference interface.
void ONNXReluOp::inferShapes() {
2020-01-14 01:21:29 +08:00
getResult().setType(getOperand().getType());
}
//===----------------------------------------------------------------------===//
// LeakyRelu
/// Infer the output shape of the ONNXLeakyReluOp. This method is required by
/// the shape inference interface.
void ONNXLeakyReluOp::inferShapes() {
2020-01-14 01:21:29 +08:00
getResult().setType(getOperand().getType());
}
//===----------------------------------------------------------------------===//
// Selu
/// Infer the output shape of the ONNXSeluOp. This method is required by
/// the shape inference interface.
void ONNXSeluOp::inferShapes() {
2020-01-14 01:21:29 +08:00
getResult().setType(getOperand().getType());
}
//===----------------------------------------------------------------------===//
// Reciprocal
/// Infer the output shape of the ONNXReciprocalOp. This method is required by
/// the shape inference interface.
void ONNXReciprocalOp::inferShapes() {
2020-01-14 01:21:29 +08:00
getResult().setType(getOperand().getType());
}
//===----------------------------------------------------------------------===//
// Softmax
/// Infer the output shape of the ONNXSoftmaxOp. This method is required by
/// the shape inference interface.
void ONNXSoftmaxOp::inferShapes() {
getResult().setType(getOperand().getType());
}
//===----------------------------------------------------------------------===//
// Add
/// Infer the output shape of the ONNXAddOp. This method is required by the
/// shape inference interface.
void ONNXAddOp::inferShapes() {
2020-01-14 01:21:29 +08:00
if (!getOperand(0).getType().isa<RankedTensorType>() ||
!getOperand(1).getType().isa<RankedTensorType>())
return;
2020-01-14 01:21:29 +08:00
auto lhsTy = getOperand(0).getType().cast<RankedTensorType>();
auto rhsTy = getOperand(1).getType().cast<RankedTensorType>();
getResult().setType(getBroadcastedType(lhsTy, rhsTy));
}
//===----------------------------------------------------------------------===//
// Mul
/// Infer the output shape of the ONNXMulOp. This method is required by the
/// shape inference interface.
void ONNXMulOp::inferShapes() {
2020-01-14 01:21:29 +08:00
if (!getOperand(0).getType().isa<RankedTensorType>() ||
!getOperand(1).getType().isa<RankedTensorType>())
return;
2020-01-14 01:21:29 +08:00
auto lhsTy = getOperand(0).getType().cast<RankedTensorType>();
auto rhsTy = getOperand(1).getType().cast<RankedTensorType>();
getResult().setType(getBroadcastedType(lhsTy, rhsTy));
}
//===----------------------------------------------------------------------===//
// Div
/// Infer the output shape of the ONNXDivOp. This method is required by the
/// shape inference interface.
void ONNXDivOp::inferShapes() {
2020-01-14 01:21:29 +08:00
if (!getOperand(0).getType().isa<RankedTensorType>() ||
!getOperand(1).getType().isa<RankedTensorType>())
return;
2020-01-14 01:21:29 +08:00
auto lhsTy = getOperand(0).getType().cast<RankedTensorType>();
auto rhsTy = getOperand(1).getType().cast<RankedTensorType>();
getResult().setType(getBroadcastedType(lhsTy, rhsTy));
}
//===----------------------------------------------------------------------===//
// Sub
/// Infer the output shape of the ONNXSubOp. This method is required by the
/// shape inference interface.
void ONNXSubOp::inferShapes() {
2020-01-14 01:21:29 +08:00
if (!getOperand(0).getType().isa<RankedTensorType>() ||
!getOperand(1).getType().isa<RankedTensorType>())
return;
2020-01-14 01:21:29 +08:00
auto lhsTy = getOperand(0).getType().cast<RankedTensorType>();
auto rhsTy = getOperand(1).getType().cast<RankedTensorType>();
getResult().setType(getBroadcastedType(lhsTy, rhsTy));
}
//===----------------------------------------------------------------------===//
// And
/// Infer the output shape of the ONNXAndOp. This method is required by the
/// shape inference interface.
void ONNXAndOp::inferShapes() {
2020-01-14 01:21:29 +08:00
if (!getOperand(0).getType().isa<RankedTensorType>() ||
!getOperand(1).getType().isa<RankedTensorType>())
return;
2020-01-14 01:21:29 +08:00
auto lhsTy = getOperand(0).getType().cast<RankedTensorType>();
auto rhsTy = getOperand(1).getType().cast<RankedTensorType>();
getResult().setType(getBroadcastedType(lhsTy, rhsTy));
}
//===----------------------------------------------------------------------===//
// Or
/// Infer the output shape of the ONNXOrOp. This method is required by the
/// shape inference interface.
void ONNXOrOp::inferShapes() {
2020-01-14 01:21:29 +08:00
if (!getOperand(0).getType().isa<RankedTensorType>() ||
!getOperand(1).getType().isa<RankedTensorType>())
return;
2020-01-14 01:21:29 +08:00
auto lhsTy = getOperand(0).getType().cast<RankedTensorType>();
auto rhsTy = getOperand(1).getType().cast<RankedTensorType>();
getResult().setType(getBroadcastedType(lhsTy, rhsTy));
}
//===----------------------------------------------------------------------===//
// Xor
/// Infer the output shape of the ONNXXorOp. This method is required by the
/// shape inference interface.
void ONNXXorOp::inferShapes() {
2020-01-14 01:21:29 +08:00
if (!getOperand(0).getType().isa<RankedTensorType>() ||
!getOperand(1).getType().isa<RankedTensorType>())
return;
2020-01-14 01:21:29 +08:00
auto lhsTy = getOperand(0).getType().cast<RankedTensorType>();
auto rhsTy = getOperand(1).getType().cast<RankedTensorType>();
getResult().setType(getBroadcastedType(lhsTy, rhsTy));
}
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Sum
/// Infer the output shape of the ONNXSumOp. This method is required by the
/// shape inference interface.
void ONNXSumOp::inferShapes() {
for (int i = 0; i < getNumOperands(); ++i) {
2020-01-14 01:21:29 +08:00
if (!getOperand(i).getType().cast<RankedTensorType>())
return;
}
2020-01-14 01:21:29 +08:00
Type resultTy = getOperand(0).getType().cast<RankedTensorType>();
for (int i = 1; i < getNumOperands(); ++i) {
2020-01-14 01:21:29 +08:00
Type nextTy = getOperand(i).getType().cast<RankedTensorType>();
resultTy = getBroadcastedType(resultTy, nextTy);
}
2020-01-14 01:21:29 +08:00
getResult().setType(resultTy);
}
//===----------------------------------------------------------------------===//
// Max
/// Infer the output shape of the ONNXMaxOp. This method is required by the
/// shape inference interface.
void ONNXMaxOp::inferShapes() {
for (int i = 0; i < getNumOperands(); ++i) {
2020-01-14 01:21:29 +08:00
if (!getOperand(i).getType().cast<RankedTensorType>())
return;
}
2020-01-14 01:21:29 +08:00
Type resultTy = getOperand(0).getType().cast<RankedTensorType>();
for (int i = 1; i < getNumOperands(); ++i) {
2020-01-14 01:21:29 +08:00
Type nextTy = getOperand(i).getType().cast<RankedTensorType>();
resultTy = getBroadcastedType(resultTy, nextTy);
}
2020-01-14 01:21:29 +08:00
getResult().setType(resultTy);
}
//===----------------------------------------------------------------------===//
// Min
/// Infer the output shape of the ONNXMinOp. This method is required by the
/// shape inference interface.
void ONNXMinOp::inferShapes() {
for (int i = 0; i < getNumOperands(); ++i) {
2020-01-14 01:21:29 +08:00
if (!getOperand(i).getType().cast<RankedTensorType>())
return;
}
2020-01-14 01:21:29 +08:00
Type resultTy = getOperand(0).getType().cast<RankedTensorType>();
for (int i = 1; i < getNumOperands(); ++i) {
2020-01-14 01:21:29 +08:00
Type nextTy = getOperand(i).getType().cast<RankedTensorType>();
resultTy = getBroadcastedType(resultTy, nextTy);
}
2020-01-14 01:21:29 +08:00
getResult().setType(resultTy);
}
//===----------------------------------------------------------------------===//
// Identity
/// Infer the output shape of the ONNXIdentityOp. This method is required by the
/// shape inference interface.
void ONNXIdentityOp::inferShapes() {
2020-01-14 01:21:29 +08:00
getResult().setType(getOperand().getType());
}
//===----------------------------------------------------------------------===//
// MatMul
void ONNXMatMulOp::inferShapes() {
// Cannot infer shape if no shape exists.
2020-01-14 01:21:29 +08:00
if (!getOperand(0).getType().isa<RankedTensorType>() ||
!getOperand(1).getType().isa<RankedTensorType>())
return;
2020-01-14 01:21:29 +08:00
auto lhsTy = getOperand(0).getType().cast<RankedTensorType>();
auto rhsTy = getOperand(1).getType().cast<RankedTensorType>();
SmallVector<int64_t, 2> dims;
dims.emplace_back(lhsTy.getShape()[0]);
dims.emplace_back(rhsTy.getShape()[1]);
2020-01-14 01:21:29 +08:00
getResult().setType(RankedTensorType::get(dims, lhsTy.getElementType()));
}
// TODO:
// Verify that matrix sizes are valid.
// Take into account the dimensionality of the matrix.
//===----------------------------------------------------------------------===//
// Gemm
void ONNXGemmOp::inferShapes() {
// Cannot infer shape if no shape exists.
2020-01-14 01:21:29 +08:00
if (!getOperand(0).getType().isa<RankedTensorType>() ||
!getOperand(1).getType().isa<RankedTensorType>())
return;
2020-01-14 01:21:29 +08:00
auto lhsTy = getOperand(0).getType().cast<RankedTensorType>();
auto rhsTy = getOperand(1).getType().cast<RankedTensorType>();
SmallVector<int64_t, 2> dims;
dims.emplace_back(lhsTy.getShape()[0]);
dims.emplace_back(rhsTy.getShape()[1]);
2020-01-14 01:21:29 +08:00
getResult().setType(RankedTensorType::get(dims, lhsTy.getElementType()));
}
2020-01-16 03:27:21 +08:00
// GemmNoBias
2020-01-16 03:11:32 +08:00
void ONNXGemmNoBiasOp::inferShapes() {
// Cannot infer shape if no shape exists.
2020-01-14 01:21:29 +08:00
if (!getOperand(0).getType().isa<RankedTensorType>() ||
!getOperand(1).getType().isa<RankedTensorType>())
return;
2020-01-14 01:21:29 +08:00
auto lhsTy = getOperand(0).getType().cast<RankedTensorType>();
auto rhsTy = getOperand(1).getType().cast<RankedTensorType>();
SmallVector<int64_t, 2> dims;
dims.emplace_back(lhsTy.getShape()[0]);
dims.emplace_back(rhsTy.getShape()[1]);
2020-01-14 01:21:29 +08:00
getResult().setType(RankedTensorType::get(dims, lhsTy.getElementType()));
}
// TODO:
// Verify that matrix sizes are valid for multiplication and addition.
// Take into account the dimensionality of the matrix.
//===----------------------------------------------------------------------===//
// Reshape
void ONNXReshapeOp::inferShapes() {
// Cannot infer shape if no shape tensor is specified.
2020-01-14 01:21:29 +08:00
if (!getOperand(1).getType().isa<RankedTensorType>())
emitError("Shape tensor not ranked.");
2020-01-14 01:21:29 +08:00
auto inputTensorTy = getOperand(0).getType().cast<RankedTensorType>();
auto shapeTensorTy = getOperand(1).getType().cast<RankedTensorType>();
// Only rank 1 shape tensors are supported.
if (shapeTensorTy.getShape().size() != 1)
emitError("Shape tensor must have rank one.");
int64_t outputRank = shapeTensorTy.getShape()[0];
// Shape tensor must have constant shape.
if (outputRank < 0)
emitError("Shape tensor must have constant shape.");
SmallVector<int64_t, 2> dims;
for (int i = 0; i < outputRank; ++i)
dims.emplace_back(-1);
2020-01-14 01:21:29 +08:00
getResult().setType(
RankedTensorType::get(dims, inputTensorTy.getElementType()));
}
//===----------------------------------------------------------------------===//
// Transpose
void ONNXTransposeOp::inferShapes() {
// Cannot infer shape if no shape exists.
2020-01-14 01:21:29 +08:00
if (!getOperand().getType().isa<RankedTensorType>())
emitError("Shape tensor not ranked.");
// Naive transposition which handles the default case of
// reversing the shape of the tensor (similar to numpy.transpose).
2020-01-21 04:48:16 +08:00
auto arrayTy = getOperand().getType().cast<RankedTensorType>();
2020-01-14 07:08:19 +08:00
SmallVector<int64_t, 2> dims;
if (auto permutation = getAttrOfType<ArrayAttr>(
ONNXTransposeOp::getPermAttrName())) {
// Perform transposition according to perm attribute.
for (auto perm : permutation.getValue())
dims.emplace_back(arrayTy.getShape()[perm.cast<IntegerAttr>().getInt()]);
2020-01-14 07:08:19 +08:00
} else {
// Default
for (auto dim : llvm::reverse(arrayTy.getShape()))
dims.emplace_back(dim);
2020-01-14 07:08:19 +08:00
}
2020-01-21 04:48:16 +08:00
getResult().setType(RankedTensorType::get(dims, arrayTy.getElementType()));
}
LogicalResult verify(ONNXTransposeOp op) {
auto module = op.getParentOfType<ModuleOp>();
if (!module)
op.emitError("Expected to belong to a module.");
if (auto permutation = op.getAttrOfType<ArrayAttr>(
ONNXTransposeOp::getPermAttrName())) {
for (auto perm : permutation.getValue())
if (perm.cast<IntegerAttr>().getInt() < 0)
op.emitError("Cannot tranpose, permuation contains negative index.");
}
return success();
}
//===----------------------------------------------------------------------===//
// Conv
// For this operation, we define the attributes once in the original Conv
// operation class. There is no need to redefine the attribute names for the
// other classes based on Conv.
void ONNXConvNoBiasOp::inferShapes() {
// Generic shape for data input X and weight tensor W:
// X: (N x C x D1 x D2 ... x Dn)
// W: (M x C/group x k1 x k2 x ... x kn)
// Cannot infer shape if no shape exists.
if (!getOperand(0).getType().isa<RankedTensorType>() ||
!getOperand(1).getType().isa<RankedTensorType>())
return;
2020-01-21 04:46:15 +08:00
auto dataTy = getOperand(0).getType().cast<RankedTensorType>();
auto weightTy = getOperand(1).getType().cast<RankedTensorType>();
auto dataShape = dataTy.getShape();
auto weightShape = weightTy.getShape();
if (dataShape.size() != weightShape.size())
emitError("ConvNoBias: weight size not compatible with data size.");
// Group is a required attribute and should have default value of 1.
int64_t group = getAttrOfType<IntegerAttr>(
ONNXConvOp::getGroupAttrName()).getInt();
if (!group)
emitError("ConvNoBias: group attribute missing.");
// Check that the X.shape[1] == (W.shape[1] * group) == C condition holds.
if (dataShape[1] != (weightShape[1] * group))
emitError("ConvNoBias: channel dimension mismatch.");
// Required attributes.
auto auto_pad = getAttrOfType<StringAttr>(
ONNXConvOp::getAutoPadAttrName());
auto pads = getAttrOfType<ArrayAttr>(
ONNXConvOp::getPadsAttrName());
SmallVector<int64_t, 2> dims;
// Insert batch size.
dims.emplace_back(dataShape[0]);
// Insert number of filters being applied (number of output channels).
dims.emplace_back(weightShape[0]);
// // Compute the spatial dimensions.
// SmallVector<int64_t, 2> spatialDims;
// // Number of spatial dimensions.
// int32_t nDims = dataTy.size() - 2;
// // Initialize dimenions based on the input and weight spatial dimensions.
// for (int i = 2; i < dataTy.size(); ++i)
// spatialDims.emplace_back(dataTy[i] - weightTy[i]);
// // Add padding information.
// if () {
// for (int i = 0; i < nDims; ++i) {
// // Padding for beginning of axis.
// int32_t p = (pads.getValue()[i]).cast<IntegerAttr>().getInt();
// spatialDims[i] += p;
// // Padding for end of axis.
// p = (pads.getValue()[i + nDims]).cast<IntegerAttr>().getInt();
// spatialDims[i] += p;
// }
// } else if () {
// // Attribute pads has not been provided.
// }
getResult().setType(RankedTensorType::get(dims, dataTy.getElementType()));
}
LogicalResult verify(ONNXConvNoBiasOp op) {
auto module = op.getParentOfType<ModuleOp>();
if (!module)
op.emitError("expected to belong to a module");
auto autoPadAttr = op.getAttrOfType<StringAttr>(
ONNXConvOp::getAutoPadAttrName());
if (!autoPadAttr)
op.emitError("ONNXConvNoBiasOp: auto_pad attribute not specified.");
auto groupAttr =
op.getAttrOfType<IntegerAttr>(ONNXConvOp::getGroupAttrName());
if (!groupAttr)
op.emitError("ONNXConvNoBiasOp: group attribute not specified.");
return success();
}
//===----------------------------------------------------------------------===//
// TableGen'd op method definitions
//===----------------------------------------------------------------------===//
#define GET_OP_CLASSES
2019-12-23 13:13:52 +08:00
#include "src/onnx.cpp.inc"