onnx-mlir/src/Builder/FrontendDialectTransformer.cpp

540 lines
20 KiB
C++
Raw Normal View History

//===--------- FrontendDialectTransformer.cpp - MLIR Operations -----------===//
//
// Copyright 2019 The IBM Research Authors.
//
// =============================================================================
//
// This file transforms the input to available MLIR dialects that can represent
// the operations of the model. Models use the ONNX dialect and any other
// extension dialects that comprise the the operations not supported or covered
// by the ONNX specification.
//
// A `frontend` placeholder dialect is used to encode operations that are not
// covered by any existing dialects.
//
//===----------------------------------------------------------------------===//
#include <type_traits>
// Using backported variant.
// bstd = backported standard library.
#include <mpark/variant.hpp>
namespace bstd = mpark;
#include "FrontendDialectTransformer.hpp"
namespace onnx_mlir {
namespace {
/*!
* The list of tensors initialized by the ONNX model.
*/
InitializedTensorMapping initializedTensors;
class FrontendGenImpl {
public:
FrontendGenImpl(mlir::MLIRContext &context)
: context_(context), builder_(&context) {
module_ = mlir::ModuleOp::create(mlir::UnknownLoc::get(&context));
}
mlir::ModuleOp ImportONNXModel(onnx::ModelProto model) {
ImportGraph(model.graph());
return module_;
}
private:
mlir::MLIRContext &context_;
mlir::ModuleOp module_;
mlir::OpBuilder builder_;
mlir::Value none_;
// mapping between string name and symbol
OnnxMlirSymbolMapping frontend_symbols_;
2019-10-08 07:47:46 +08:00
mlir::Location UnknownLoc() { return mlir::UnknownLoc::get(&context_); }
// Convert type to MLIR type.
// A complete list of types can be found in:
// <onnx-mlir-build-folder>/third_party/onnx/onnx/onnx.pb.h
mlir::Type convertONNXTypeToMLIRType(onnx::TensorProto_DataType onnxType) {
switch (onnxType) {
case onnx::TensorProto_DataType::TensorProto_DataType_FLOAT16:
return builder_.getF16Type();
case onnx::TensorProto_DataType::TensorProto_DataType_FLOAT:
return builder_.getF32Type();
case onnx::TensorProto_DataType::TensorProto_DataType_DOUBLE:
return builder_.getF64Type();
case onnx::TensorProto_DataType::TensorProto_DataType_INT8:
case onnx::TensorProto_DataType::TensorProto_DataType_UINT8:
return builder_.getIntegerType(/*width=*/8);
case onnx::TensorProto_DataType::TensorProto_DataType_INT16:
case onnx::TensorProto_DataType::TensorProto_DataType_UINT16:
return builder_.getIntegerType(/*width=*/16);
case onnx::TensorProto_DataType::TensorProto_DataType_INT32:
case onnx::TensorProto_DataType::TensorProto_DataType_UINT32:
return builder_.getIntegerType(/*width=*/32);
case onnx::TensorProto_DataType::TensorProto_DataType_INT64:
case onnx::TensorProto_DataType::TensorProto_DataType_UINT64:
return builder_.getIntegerType(/*width=*/64);
case onnx::TensorProto_DataType::TensorProto_DataType_BOOL:
return builder_.getI1Type();
case onnx::TensorProto_DataType::TensorProto_DataType_STRING:
case onnx::TensorProto_DataType::TensorProto_DataType_COMPLEX64:
case onnx::TensorProto_DataType::TensorProto_DataType_COMPLEX128:
case onnx::TensorProto_DataType::TensorProto_DataType_UNDEFINED:
default:
assert(false && "Unsupported data type encountered.");
return nullptr;
}
}
/*!
* Import an onnx input tensor type by determining and recording its type
* in a list of input tensor mlir types.
* @param input onnx input tensor ValueInfoProto.
* @param arg_types list of mlir types representing types of graph input.
*/
mlir::Type ImportInputTensorType(const onnx::ValueInfoProto &input) {
std::vector<int64_t> dims;
auto shape_proto = input.type().tensor_type().shape();
auto input_tensor_legalized_name = legalize_name(input.name());
for (int i = 0; i < shape_proto.dim_size(); i++) {
if (shape_proto.dim()[i].dim_value()) {
int dim_numeric_size = shape_proto.dim()[i].dim_value();
assert(dim_numeric_size != 0 &&
"Parsed an input tensor with a dimension size of zero");
if (dim_numeric_size > 0) {
dims.push_back(dim_numeric_size);
} else { // If dim_value < 0, then dim is parametric.
// TODO Verify the unknown dim size in MLIR
2019-10-08 07:47:46 +08:00
dims.push_back(-1);
}
} else {
2019-10-08 07:47:46 +08:00
// TODO How to represent variable length
dims.push_back(-1);
}
}
auto elementOnnxType =
(onnx::TensorProto_DataType)input.type().tensor_type().elem_type();
mlir::Type elementType = convertONNXTypeToMLIRType(elementOnnxType);
llvm::ArrayRef<int64_t> tensor_dims(dims.data(), dims.size());
return mlir::RankedTensorType::get(tensor_dims, elementType);
}
/*!
* Import a input tensor symbol by recording a new entry in frontend_symbols_
* recording the mapping between legalized onnx tensor name and mlir::Value
* for further lookup in computation node importing.
* @param input onnx input tensor ValueInfoProto.
* @param symbol mlir input argument.
*/
void ImportInputTensorSymbol(
const onnx::ValueInfoProto &input, mlir::Value symbol) {
auto input_tensor_legalized_name = legalize_name(input.name());
assert(!frontend_symbols_.ContainKey(input_tensor_legalized_name) &&
"Found duplicate legalized input tensor names.");
frontend_symbols_.AddMapping(input_tensor_legalized_name, symbol);
}
mlir::NamedAttribute convertOnnxAttributeProtoToMlirNamedAttribute(
onnx::AttributeProto &attr) {
mlir::Attribute mlirAttr;
switch (attr.type()) {
case onnx::AttributeProto::FLOAT:
mlirAttr = builder_.getF32FloatAttr(attr.f());
break;
case onnx::AttributeProto::INT:
mlirAttr = builder_.getI64IntegerAttr(attr.i());
break;
case onnx::AttributeProto::STRING:
mlirAttr = builder_.getStringAttr(attr.s());
break;
case onnx::AttributeProto::FLOATS:
mlirAttr = builder_.getF32ArrayAttr(
llvm::makeArrayRef(attr.floats().begin(), attr.floats().end()));
break;
case onnx::AttributeProto::INTS:
mlirAttr = builder_.getI64ArrayAttr(
llvm::makeArrayRef(attr.ints().begin(), attr.ints().end()));
break;
case onnx::AttributeProto::TENSOR:
mlirAttr = onnxTensorProtoToDenseElmAttr(builder_, attr.t());
break;
default:
llvm_unreachable("datatype for attribute is not implemented");
break;
}
return builder_.getNamedAttr(attr.name(), mlirAttr);
}
std::vector<mlir::NamedAttribute> ImportNodeAttributes(
const onnx::NodeProto &node) {
std::vector<mlir::NamedAttribute> attributes;
for (int i = 0; i < node.attribute_size(); ++i) {
auto attr = node.attribute(i);
attributes.push_back(convertOnnxAttributeProtoToMlirNamedAttribute(attr));
}
return attributes;
}
void ImportNodeGeneric(const onnx::NodeProto &node) {
std::vector<mlir::Value> inputs;
for (const auto &item : node.input()) {
if (frontend_symbols_.ContainKey(legalize_name(item))) {
inputs.push_back(frontend_symbols_.GetTensorByOnnxName(item));
}
}
mlir::OperationState result(UnknownLoc(), "frontend." + node.op_type());
for (auto item : node.output()) {
result.addTypes(mlir::UnrankedTensorType::get(builder_.getF32Type()));
}
result.addOperands(inputs);
2019-10-08 07:47:46 +08:00
auto op = builder_.createOperation(result);
for (int i = 0; i < node.output().size(); i++) {
auto r = op->getResult(i);
frontend_symbols_.AddMapping(legalize_name(node.output()[i]), r);
}
}
#define MAX_TYPE 20
// itblgen_types = ('I1', 'I8', 'I16', 'I32', 'I64', 'BF16', 'F16', 'F32',
// 'F64', 'Complex<F32>', 'Complex<F64>' )
mlir::Type buildTypeFromIndex(int index) {
switch (index) {
case 0:
return builder_.getI1Type();
case 1:
return builder_.getIntegerType(8);
case 2:
return builder_.getIntegerType(16);
case 3:
return builder_.getIntegerType(32);
case 4:
return builder_.getIntegerType(64);
case 5:
return builder_.getBF16Type();
case 6:
return builder_.getF16Type();
case 7:
return builder_.getF32Type();
case 8:
return builder_.getF64Type();
case 9: {
std::vector<mlir::Type> typeTuple(2);
typeTuple.push_back(builder_.getF32Type());
typeTuple.push_back(builder_.getF32Type());
return builder_.getTupleType(llvm::ArrayRef<mlir::Type>(typeTuple));
}
case 10: {
std::vector<mlir::Type> typeTuple(2);
typeTuple.push_back(builder_.getF64Type());
typeTuple.push_back(builder_.getF64Type());
return builder_.getTupleType(llvm::ArrayRef<mlir::Type>(typeTuple));
}
default:
assert(false && "Unsupported type index encountered.");
return nullptr;
}
}
template <typename T>
void buildOutputAndOperation(const onnx::NodeProto &node,
std::vector<mlir::Value> inputs, int expectedNumOperands,
int expectedNumResults) {
bool variadicIn = expectedNumOperands == -1;
bool variadicOut = expectedNumResults == -1;
// In ONNX, there are two ways to leave an optional input or output
// unspecified: the first, available only for trailing inputs and outputs,
// is to simply not provide that input; the second method is to use an empty
// string in place of an input or output name.
//
// Here, we import optional inputs and outputs as NoneType.
// Trailing optional inputs.
if (!variadicIn)
for (auto i = inputs.size(); i < expectedNumOperands; i++)
inputs.emplace_back(none_);
std::vector<mlir::Type> outputTypes;
// Use the type map to determine the data type of output.
std::vector<int> outputMap = T::getTypeMap();
for (auto i = 0; i < node.output().size(); i++) {
// Optional outputs using empty string.
if (node.output()[i].empty()) {
outputTypes.emplace_back(builder_.getNoneType());
} else {
if (i < outputMap.size() && outputMap[i] >= MAX_TYPE) {
// Mapping gives a connection with an input.
mlir::Type inputType = inputs[outputMap[i] - MAX_TYPE].getType();
if (inputType.isa<mlir::TensorType>()) {
auto elementType =
inputType.cast<mlir::TensorType>().getElementType();
auto outType = mlir::UnrankedTensorType::get(elementType);
outputTypes.emplace_back(outType);
} else {
outputTypes.push_back(inputType);
}
} else if (i < outputMap.size() && outputMap[i] != -1) {
// Mapping gives a direct type.
auto elementType = buildTypeFromIndex(outputMap[i]);
auto outType = mlir::UnrankedTensorType::get(elementType);
outputTypes.emplace_back(outType);
} else {
outputTypes.emplace_back(builder_.getNoneType());
}
}
}
// Trailing optional outputs.
if (!variadicOut)
for (int i = node.output().size(); i < expectedNumResults; ++i)
outputTypes.emplace_back(builder_.getNoneType());
2019-10-08 07:47:46 +08:00
auto attributes = ImportNodeAttributes(node);
// TODO: Handle optional inputs.
auto op = builder_.create<T>(UnknownLoc(), outputTypes, inputs, attributes);
for (int i = 0; i < node.output().size(); i++) {
frontend_symbols_.AddMapping(
legalize_name(node.output()[i]), *(op.getODSResults(i).begin()));
}
}
template <typename T>
void buildOperation(const onnx::NodeProto &node) {
std::vector<mlir::Value> inputs;
int expectedNumOperands = T::getNumberOfOperands();
int expectedNumResults = T::getNumberOfResults();
for (const auto &item : node.input())
if (initializedTensors.ContainKey(legalize_name(item))) {
inputs.push_back(initializedTensors.EmitInitializerForInputTensor(
UnknownLoc(), builder_, legalize_name(item)));
} else if (frontend_symbols_.ContainKey(legalize_name(item))) {
inputs.push_back(frontend_symbols_.GetTensorByOnnxName(item));
}
buildOutputAndOperation<T>(
node, inputs, expectedNumOperands, expectedNumResults);
}
void ImportNodeReshape(onnx::NodeProto node) {
int expectedNumOperands = mlir::ONNXReshapeOp::getNumberOfOperands();
int expectedNumResults = mlir::ONNXReshapeOp::getNumberOfResults();
std::vector<mlir::Value> inputs;
std::string item;
for (int i = 0; i < node.input().size(); ++i) {
item = node.input()[i];
// For the second argument, check if there exists an initializer.
if (initializedTensors.ContainKey(legalize_name(item))) {
inputs.push_back(initializedTensors.EmitInitializerForInputTensor(
UnknownLoc(), builder_, legalize_name(item)));
} else if (frontend_symbols_.ContainKey(legalize_name(item))) {
inputs.push_back(frontend_symbols_.GetTensorByOnnxName(item));
}
}
buildOutputAndOperation<mlir::ONNXReshapeOp>(
node, inputs, expectedNumOperands, expectedNumResults);
}
/*!
* Special handle for MaxPool operations.
*/
void ImportNodeMaxPool(onnx::NodeProto node) {
int nOuts = node.output().size();
if (nOuts == 1) {
buildOperation<mlir::ONNXMaxPoolSingleOutOp>(node);
} else {
buildOperation<mlir::ONNXMaxPoolOp>(node);
}
}
/*!
* Special handle for BatchNormalization operations.
*/
void ImportNodeBatchNormalization(onnx::NodeProto node) {
int nOuts = node.output().size();
if (nOuts == 1) {
// Test mode with one output.
buildOperation<mlir::ONNXBatchNormalizationTestModeOp>(node);
} else {
// Training mode with four trailing optional outputs. Not handled yet.
buildOperation<mlir::ONNXBatchNormalizationOp>(node);
}
}
/*!
* Special handle for Pad operations.
*/
void ImportNodePad(onnx::NodeProto node) {
int nOps = node.input().size();
if (nOps == 2) {
llvm::SmallVector<int64_t, 2> dims;
dims.push_back(1);
llvm::SmallVector<float, 2> values;
values.push_back(0.);
auto elementType = builder_.getF32Type();
llvm::ArrayRef<int64_t> tensorDims(dims.data(), dims.size());
auto tensorType = mlir::RankedTensorType::get(tensorDims, elementType);
auto constantDenseAttribute =
mlir::DenseElementsAttr::get(tensorType, llvm::makeArrayRef(values));
// Use the special builder defined in ONNXOp.td.inc.
auto constantOp = builder_.create<mlir::ONNXConstantOp>(
UnknownLoc(), mlir::Attribute(), constantDenseAttribute);
mlir::Value constantResult = *(constantOp.getODSResults(0).begin());
std::vector<mlir::Value> inputs;
for (const auto &item : node.input())
if (initializedTensors.ContainKey(legalize_name(item))) {
inputs.push_back(initializedTensors.EmitInitializerForInputTensor(
UnknownLoc(), builder_, legalize_name(item)));
} else if (frontend_symbols_.ContainKey(legalize_name(item))) {
inputs.push_back(frontend_symbols_.GetTensorByOnnxName(item));
}
inputs.push_back(constantResult);
int nIn = mlir::ONNXPadOp::getNumberOfOperands();
int nOut = mlir::ONNXPadOp::getNumberOfResults();
buildOutputAndOperation<mlir::ONNXPadOp>(node, inputs, nIn, nOut);
} else {
buildOperation<mlir::ONNXPadOp>(node);
}
}
void ImportNode(const onnx::NodeProto &node) {
llvm::StringRef opName = node.op_type();
// the following code is generated by gen_doc.py
// refer to Dialect/ONNX/ONNXOps.td for details
// when the input or output of then op does not match the specification,
// the generic operator is used
// one known reeason is the optional input
#include "src/Builder/OpBuildTable.inc"
#if INCLUDE_ONNX_ML == 1
#include "src/Builder/MLOpBuildTable.inc"
#endif
}
/*!
* Import output tensor, by doing the following:
* - Add the type of this output tensor to a list of tensor
* types representing return types of this graph function.
* - Add this output tensor to the list of mlir::Value
* to be returned by the function representing computation graph.
* @param output onnx output tensor ValueInfoProto.
* @param ret_types a vector of tensor types representing graph's
* output tensor types.
* @param ret_vals a vector of mlir Value representing graph's
* output tensor.
*/
void ImportOutputTensor(const onnx::ValueInfoProto &output,
llvm::SmallVectorImpl<mlir::Type> &ret_types,
llvm::SmallVectorImpl<mlir::Value> &ret_vals) {
auto output_tensor_legalized_name = legalize_name(output.name());
assert(frontend_symbols_.ContainKey(output_tensor_legalized_name) &&
"Output tensor not found");
auto tensor_val =
frontend_symbols_.GetTensorByOnnxName(output_tensor_legalized_name);
2020-01-14 01:21:29 +08:00
ret_types.emplace_back(tensor_val.getType());
ret_vals.push_back(tensor_val);
}
void ImportGraph(
const onnx::GraphProto &graph, const std::string &name = "main_graph") {
// Maintain a mapping between the parameter and its initializer.
for (auto initializer : graph.initializer()) {
auto name = initializer.name();
initializedTensors.AddMapping(legalize_name(name), initializer);
}
2019-10-08 07:47:46 +08:00
// create a function for the graph
// TODO:
// * get name and type for the function.
// * maintain a list of the defined graph
llvm::SmallVector<mlir::Type, 4> arg_types;
// Import the input tensor types that are not constant and not initialized.
for (const auto &input : graph.input())
if (!initializedTensors.ContainKey(legalize_name(input.name())))
arg_types.emplace_back(ImportInputTensorType(input));
// Create the main function.
auto funcType = builder_.getFunctionType(arg_types, {});
auto mainFunc =
mlir::FuncOp::create(UnknownLoc(), name, funcType, /* attrs = */ {});
// Emit the entry point operation which specifies the number of user
// inputs and outputs.
auto entryPoint = mlir::ONNXEntryPointOp::create(UnknownLoc(), mainFunc,
/*numInputs=*/graph.input().size() - graph.initializer().size(),
/*numOutputs=*/graph.output().size());
// Get the entru block inside the main function and set the insertion point
// to it.
auto &entryBlock = *mainFunc.addEntryBlock();
builder_.setInsertionPointToStart(&entryBlock);
module_.push_back(mainFunc);
module_.push_back(entryPoint);
// Map graph inputs to entry block arguments.
// Counter of un-initialized tensors. This counter is used to index the
// entry block arguments.
int entryBlockArgIdx = 0;
for (int i = 0; i < graph.input().size(); ++i) {
if (!initializedTensors.ContainKey(
legalize_name(graph.input()[i].name()))) {
ImportInputTensorSymbol(
graph.input()[i], entryBlock.getArguments()[entryBlockArgIdx]);
entryBlockArgIdx++;
}
}
// Create a NoneTyped constant to be used for optional operation inputs
// which are not used.
none_ =
builder_.create<mlir::ConstantOp>(UnknownLoc(), builder_.getUnitAttr());
// Import nodes in the graph.
for (const auto &item : graph.node()) {
ImportNode(item);
}
llvm::SmallVector<mlir::Type, 4> ret_types;
llvm::SmallVector<mlir::Value, 4> ret_vals;
// Import the output tensors
for (const auto &output : graph.output()) {
ImportOutputTensor(output, ret_types, ret_vals);
}
// Create a return operation to return all ONNX output tensors.
builder_.create<mlir::ReturnOp>(UnknownLoc(), ret_vals);
// Update main function signature to reflect types of newly imported
// output tensors.
funcType = builder_.getFunctionType(arg_types, ret_types);
mainFunc.setType(funcType);
}
}; // FrontendGenImpl class
} // namespace
} // namespace onnx_mlir
namespace onnx_mlir {
void ImportFrontendModelFile(std::string model_fname,
mlir::MLIRContext &context, mlir::OwningModuleRef &module) {
onnx::ModelProto model;
std::fstream input(model_fname, std::ios::in | std::ios::binary);
auto parse_success = model.ParseFromIstream(&input);
assert(parse_success && "Onnx Model Parsing Failed.");
FrontendGenImpl myONNXGen(context);
module = myONNXGen.ImportONNXModel(model);
}
} // namespace onnx_mlir