|
|
|
@ -65,14 +65,14 @@ ONNXEntryPointOp ONNXEntryPointOp::create(mlir::Location location,
|
|
|
|
|
// Exp
|
|
|
|
|
/// Infer the output shape of the ONNXExpOp. This method is required by the
|
|
|
|
|
/// shape inference interface.
|
|
|
|
|
void ONNXExpOp::inferShapes() { getResult()->setType(getOperand()->getType()); }
|
|
|
|
|
void ONNXExpOp::inferShapes() { getResult().setType(getOperand().getType()); }
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
// Tanh
|
|
|
|
|
/// Infer the output shape of the ONNXTanhOp. This method is required by the
|
|
|
|
|
/// shape inference interface.
|
|
|
|
|
void ONNXTanhOp::inferShapes() {
|
|
|
|
|
getResult()->setType(getOperand()->getType());
|
|
|
|
|
getResult().setType(getOperand().getType());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
@ -80,7 +80,7 @@ void ONNXTanhOp::inferShapes() {
|
|
|
|
|
/// Infer the output shape of the ONNXSinhOp. This method is required by the
|
|
|
|
|
/// shape inference interface.
|
|
|
|
|
void ONNXSinhOp::inferShapes() {
|
|
|
|
|
getResult()->setType(getOperand()->getType());
|
|
|
|
|
getResult().setType(getOperand().getType());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
@ -88,27 +88,27 @@ void ONNXSinhOp::inferShapes() {
|
|
|
|
|
/// Infer the output shape of the ONNXCoshOp. This method is required by the
|
|
|
|
|
/// shape inference interface.
|
|
|
|
|
void ONNXCoshOp::inferShapes() {
|
|
|
|
|
getResult()->setType(getOperand()->getType());
|
|
|
|
|
getResult().setType(getOperand().getType());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
// Cos
|
|
|
|
|
/// Infer the output shape of the ONNXCosOp. This method is required by the
|
|
|
|
|
/// shape inference interface.
|
|
|
|
|
void ONNXCosOp::inferShapes() { getResult()->setType(getOperand()->getType()); }
|
|
|
|
|
void ONNXCosOp::inferShapes() { getResult().setType(getOperand().getType()); }
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
// Log
|
|
|
|
|
/// Infer the output shape of the ONNXLogOp. This method is required by the
|
|
|
|
|
/// shape inference interface.
|
|
|
|
|
void ONNXLogOp::inferShapes() { getResult()->setType(getOperand()->getType()); }
|
|
|
|
|
void ONNXLogOp::inferShapes() { getResult().setType(getOperand().getType()); }
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
// HardSigmoid
|
|
|
|
|
/// Infer the output shape of the ONNXHardSigmoidOp. This method is required by
|
|
|
|
|
/// the shape inference interface.
|
|
|
|
|
void ONNXHardSigmoidOp::inferShapes() {
|
|
|
|
|
getResult()->setType(getOperand()->getType());
|
|
|
|
|
getResult().setType(getOperand().getType());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
@ -116,21 +116,21 @@ void ONNXHardSigmoidOp::inferShapes() {
|
|
|
|
|
/// Infer the output shape of the ONNXSigmoidOp. This method is required by the
|
|
|
|
|
/// shape inference interface.
|
|
|
|
|
void ONNXSigmoidOp::inferShapes() {
|
|
|
|
|
getResult()->setType(getOperand()->getType());
|
|
|
|
|
getResult().setType(getOperand().getType());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
// Elu
|
|
|
|
|
/// Infer the output shape of the ONNXEluOp. This method is required by the
|
|
|
|
|
/// shape inference interface.
|
|
|
|
|
void ONNXEluOp::inferShapes() { getResult()->setType(getOperand()->getType()); }
|
|
|
|
|
void ONNXEluOp::inferShapes() { getResult().setType(getOperand().getType()); }
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
// Relu
|
|
|
|
|
/// Infer the output shape of the ONNXReluOp. This method is required by the
|
|
|
|
|
/// shape inference interface.
|
|
|
|
|
void ONNXReluOp::inferShapes() {
|
|
|
|
|
getResult()->setType(getOperand()->getType());
|
|
|
|
|
getResult().setType(getOperand().getType());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
@ -138,7 +138,7 @@ void ONNXReluOp::inferShapes() {
|
|
|
|
|
/// Infer the output shape of the ONNXLeakyReluOp. This method is required by
|
|
|
|
|
/// the shape inference interface.
|
|
|
|
|
void ONNXLeakyReluOp::inferShapes() {
|
|
|
|
|
getResult()->setType(getOperand()->getType());
|
|
|
|
|
getResult().setType(getOperand().getType());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
@ -146,7 +146,7 @@ void ONNXLeakyReluOp::inferShapes() {
|
|
|
|
|
/// Infer the output shape of the ONNXSeluOp. This method is required by
|
|
|
|
|
/// the shape inference interface.
|
|
|
|
|
void ONNXSeluOp::inferShapes() {
|
|
|
|
|
getResult()->setType(getOperand()->getType());
|
|
|
|
|
getResult().setType(getOperand().getType());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
@ -154,7 +154,7 @@ void ONNXSeluOp::inferShapes() {
|
|
|
|
|
/// Infer the output shape of the ONNXReciprocalOp. This method is required by
|
|
|
|
|
/// the shape inference interface.
|
|
|
|
|
void ONNXReciprocalOp::inferShapes() {
|
|
|
|
|
getResult()->setType(getOperand()->getType());
|
|
|
|
|
getResult().setType(getOperand().getType());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
@ -162,12 +162,12 @@ void ONNXReciprocalOp::inferShapes() {
|
|
|
|
|
/// Infer the output shape of the ONNXAddOp. This method is required by the
|
|
|
|
|
/// shape inference interface.
|
|
|
|
|
void ONNXAddOp::inferShapes() {
|
|
|
|
|
if (!getOperand(0)->getType().isa<RankedTensorType>() ||
|
|
|
|
|
!getOperand(1)->getType().isa<RankedTensorType>())
|
|
|
|
|
if (!getOperand(0).getType().isa<RankedTensorType>() ||
|
|
|
|
|
!getOperand(1).getType().isa<RankedTensorType>())
|
|
|
|
|
return;
|
|
|
|
|
auto lhsTy = getOperand(0)->getType().cast<RankedTensorType>();
|
|
|
|
|
auto rhsTy = getOperand(1)->getType().cast<RankedTensorType>();
|
|
|
|
|
getResult()->setType(getBroadcastedType(lhsTy, rhsTy));
|
|
|
|
|
auto lhsTy = getOperand(0).getType().cast<RankedTensorType>();
|
|
|
|
|
auto rhsTy = getOperand(1).getType().cast<RankedTensorType>();
|
|
|
|
|
getResult().setType(getBroadcastedType(lhsTy, rhsTy));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
@ -175,12 +175,12 @@ void ONNXAddOp::inferShapes() {
|
|
|
|
|
/// Infer the output shape of the ONNXMulOp. This method is required by the
|
|
|
|
|
/// shape inference interface.
|
|
|
|
|
void ONNXMulOp::inferShapes() {
|
|
|
|
|
if (!getOperand(0)->getType().isa<RankedTensorType>() ||
|
|
|
|
|
!getOperand(1)->getType().isa<RankedTensorType>())
|
|
|
|
|
if (!getOperand(0).getType().isa<RankedTensorType>() ||
|
|
|
|
|
!getOperand(1).getType().isa<RankedTensorType>())
|
|
|
|
|
return;
|
|
|
|
|
auto lhsTy = getOperand(0)->getType().cast<RankedTensorType>();
|
|
|
|
|
auto rhsTy = getOperand(1)->getType().cast<RankedTensorType>();
|
|
|
|
|
getResult()->setType(getBroadcastedType(lhsTy, rhsTy));
|
|
|
|
|
auto lhsTy = getOperand(0).getType().cast<RankedTensorType>();
|
|
|
|
|
auto rhsTy = getOperand(1).getType().cast<RankedTensorType>();
|
|
|
|
|
getResult().setType(getBroadcastedType(lhsTy, rhsTy));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
@ -188,12 +188,12 @@ void ONNXMulOp::inferShapes() {
|
|
|
|
|
/// Infer the output shape of the ONNXDivOp. This method is required by the
|
|
|
|
|
/// shape inference interface.
|
|
|
|
|
void ONNXDivOp::inferShapes() {
|
|
|
|
|
if (!getOperand(0)->getType().isa<RankedTensorType>() ||
|
|
|
|
|
!getOperand(1)->getType().isa<RankedTensorType>())
|
|
|
|
|
if (!getOperand(0).getType().isa<RankedTensorType>() ||
|
|
|
|
|
!getOperand(1).getType().isa<RankedTensorType>())
|
|
|
|
|
return;
|
|
|
|
|
auto lhsTy = getOperand(0)->getType().cast<RankedTensorType>();
|
|
|
|
|
auto rhsTy = getOperand(1)->getType().cast<RankedTensorType>();
|
|
|
|
|
getResult()->setType(getBroadcastedType(lhsTy, rhsTy));
|
|
|
|
|
auto lhsTy = getOperand(0).getType().cast<RankedTensorType>();
|
|
|
|
|
auto rhsTy = getOperand(1).getType().cast<RankedTensorType>();
|
|
|
|
|
getResult().setType(getBroadcastedType(lhsTy, rhsTy));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
@ -201,12 +201,12 @@ void ONNXDivOp::inferShapes() {
|
|
|
|
|
/// Infer the output shape of the ONNXSubOp. This method is required by the
|
|
|
|
|
/// shape inference interface.
|
|
|
|
|
void ONNXSubOp::inferShapes() {
|
|
|
|
|
if (!getOperand(0)->getType().isa<RankedTensorType>() ||
|
|
|
|
|
!getOperand(1)->getType().isa<RankedTensorType>())
|
|
|
|
|
if (!getOperand(0).getType().isa<RankedTensorType>() ||
|
|
|
|
|
!getOperand(1).getType().isa<RankedTensorType>())
|
|
|
|
|
return;
|
|
|
|
|
auto lhsTy = getOperand(0)->getType().cast<RankedTensorType>();
|
|
|
|
|
auto rhsTy = getOperand(1)->getType().cast<RankedTensorType>();
|
|
|
|
|
getResult()->setType(getBroadcastedType(lhsTy, rhsTy));
|
|
|
|
|
auto lhsTy = getOperand(0).getType().cast<RankedTensorType>();
|
|
|
|
|
auto rhsTy = getOperand(1).getType().cast<RankedTensorType>();
|
|
|
|
|
getResult().setType(getBroadcastedType(lhsTy, rhsTy));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
@ -214,12 +214,12 @@ void ONNXSubOp::inferShapes() {
|
|
|
|
|
/// Infer the output shape of the ONNXAndOp. This method is required by the
|
|
|
|
|
/// shape inference interface.
|
|
|
|
|
void ONNXAndOp::inferShapes() {
|
|
|
|
|
if (!getOperand(0)->getType().isa<RankedTensorType>() ||
|
|
|
|
|
!getOperand(1)->getType().isa<RankedTensorType>())
|
|
|
|
|
if (!getOperand(0).getType().isa<RankedTensorType>() ||
|
|
|
|
|
!getOperand(1).getType().isa<RankedTensorType>())
|
|
|
|
|
return;
|
|
|
|
|
auto lhsTy = getOperand(0)->getType().cast<RankedTensorType>();
|
|
|
|
|
auto rhsTy = getOperand(1)->getType().cast<RankedTensorType>();
|
|
|
|
|
getResult()->setType(getBroadcastedType(lhsTy, rhsTy));
|
|
|
|
|
auto lhsTy = getOperand(0).getType().cast<RankedTensorType>();
|
|
|
|
|
auto rhsTy = getOperand(1).getType().cast<RankedTensorType>();
|
|
|
|
|
getResult().setType(getBroadcastedType(lhsTy, rhsTy));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
@ -227,12 +227,12 @@ void ONNXAndOp::inferShapes() {
|
|
|
|
|
/// Infer the output shape of the ONNXOrOp. This method is required by the
|
|
|
|
|
/// shape inference interface.
|
|
|
|
|
void ONNXOrOp::inferShapes() {
|
|
|
|
|
if (!getOperand(0)->getType().isa<RankedTensorType>() ||
|
|
|
|
|
!getOperand(1)->getType().isa<RankedTensorType>())
|
|
|
|
|
if (!getOperand(0).getType().isa<RankedTensorType>() ||
|
|
|
|
|
!getOperand(1).getType().isa<RankedTensorType>())
|
|
|
|
|
return;
|
|
|
|
|
auto lhsTy = getOperand(0)->getType().cast<RankedTensorType>();
|
|
|
|
|
auto rhsTy = getOperand(1)->getType().cast<RankedTensorType>();
|
|
|
|
|
getResult()->setType(getBroadcastedType(lhsTy, rhsTy));
|
|
|
|
|
auto lhsTy = getOperand(0).getType().cast<RankedTensorType>();
|
|
|
|
|
auto rhsTy = getOperand(1).getType().cast<RankedTensorType>();
|
|
|
|
|
getResult().setType(getBroadcastedType(lhsTy, rhsTy));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
@ -240,12 +240,12 @@ void ONNXOrOp::inferShapes() {
|
|
|
|
|
/// Infer the output shape of the ONNXXorOp. This method is required by the
|
|
|
|
|
/// shape inference interface.
|
|
|
|
|
void ONNXXorOp::inferShapes() {
|
|
|
|
|
if (!getOperand(0)->getType().isa<RankedTensorType>() ||
|
|
|
|
|
!getOperand(1)->getType().isa<RankedTensorType>())
|
|
|
|
|
if (!getOperand(0).getType().isa<RankedTensorType>() ||
|
|
|
|
|
!getOperand(1).getType().isa<RankedTensorType>())
|
|
|
|
|
return;
|
|
|
|
|
auto lhsTy = getOperand(0)->getType().cast<RankedTensorType>();
|
|
|
|
|
auto rhsTy = getOperand(1)->getType().cast<RankedTensorType>();
|
|
|
|
|
getResult()->setType(getBroadcastedType(lhsTy, rhsTy));
|
|
|
|
|
auto lhsTy = getOperand(0).getType().cast<RankedTensorType>();
|
|
|
|
|
auto rhsTy = getOperand(1).getType().cast<RankedTensorType>();
|
|
|
|
|
getResult().setType(getBroadcastedType(lhsTy, rhsTy));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
@ -256,15 +256,15 @@ void ONNXXorOp::inferShapes() {
|
|
|
|
|
/// shape inference interface.
|
|
|
|
|
void ONNXSumOp::inferShapes() {
|
|
|
|
|
for (int i = 0; i < getNumOperands(); ++i) {
|
|
|
|
|
if (!getOperand(i)->getType().cast<RankedTensorType>())
|
|
|
|
|
if (!getOperand(i).getType().cast<RankedTensorType>())
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
Type resultTy = getOperand(0)->getType().cast<RankedTensorType>();
|
|
|
|
|
Type resultTy = getOperand(0).getType().cast<RankedTensorType>();
|
|
|
|
|
for (int i = 1; i < getNumOperands(); ++i) {
|
|
|
|
|
Type nextTy = getOperand(i)->getType().cast<RankedTensorType>();
|
|
|
|
|
Type nextTy = getOperand(i).getType().cast<RankedTensorType>();
|
|
|
|
|
resultTy = getBroadcastedType(resultTy, nextTy);
|
|
|
|
|
}
|
|
|
|
|
getResult()->setType(resultTy);
|
|
|
|
|
getResult().setType(resultTy);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
@ -273,15 +273,15 @@ void ONNXSumOp::inferShapes() {
|
|
|
|
|
/// shape inference interface.
|
|
|
|
|
void ONNXMaxOp::inferShapes() {
|
|
|
|
|
for (int i = 0; i < getNumOperands(); ++i) {
|
|
|
|
|
if (!getOperand(i)->getType().cast<RankedTensorType>())
|
|
|
|
|
if (!getOperand(i).getType().cast<RankedTensorType>())
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
Type resultTy = getOperand(0)->getType().cast<RankedTensorType>();
|
|
|
|
|
Type resultTy = getOperand(0).getType().cast<RankedTensorType>();
|
|
|
|
|
for (int i = 1; i < getNumOperands(); ++i) {
|
|
|
|
|
Type nextTy = getOperand(i)->getType().cast<RankedTensorType>();
|
|
|
|
|
Type nextTy = getOperand(i).getType().cast<RankedTensorType>();
|
|
|
|
|
resultTy = getBroadcastedType(resultTy, nextTy);
|
|
|
|
|
}
|
|
|
|
|
getResult()->setType(resultTy);
|
|
|
|
|
getResult().setType(resultTy);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
@ -290,15 +290,15 @@ void ONNXMaxOp::inferShapes() {
|
|
|
|
|
/// shape inference interface.
|
|
|
|
|
void ONNXMinOp::inferShapes() {
|
|
|
|
|
for (int i = 0; i < getNumOperands(); ++i) {
|
|
|
|
|
if (!getOperand(i)->getType().cast<RankedTensorType>())
|
|
|
|
|
if (!getOperand(i).getType().cast<RankedTensorType>())
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
Type resultTy = getOperand(0)->getType().cast<RankedTensorType>();
|
|
|
|
|
Type resultTy = getOperand(0).getType().cast<RankedTensorType>();
|
|
|
|
|
for (int i = 1; i < getNumOperands(); ++i) {
|
|
|
|
|
Type nextTy = getOperand(i)->getType().cast<RankedTensorType>();
|
|
|
|
|
Type nextTy = getOperand(i).getType().cast<RankedTensorType>();
|
|
|
|
|
resultTy = getBroadcastedType(resultTy, nextTy);
|
|
|
|
|
}
|
|
|
|
|
getResult()->setType(resultTy);
|
|
|
|
|
getResult().setType(resultTy);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
@ -306,7 +306,7 @@ void ONNXMinOp::inferShapes() {
|
|
|
|
|
/// Infer the output shape of the ONNXIdentityOp. This method is required by the
|
|
|
|
|
/// shape inference interface.
|
|
|
|
|
void ONNXIdentityOp::inferShapes() {
|
|
|
|
|
getResult()->setType(getOperand()->getType());
|
|
|
|
|
getResult().setType(getOperand().getType());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
@ -315,15 +315,15 @@ void ONNXIdentityOp::inferShapes() {
|
|
|
|
|
|
|
|
|
|
void ONNXMatMulOp::inferShapes() {
|
|
|
|
|
// Cannot infer shape if no shape exists.
|
|
|
|
|
if (!getOperand(0)->getType().isa<RankedTensorType>() ||
|
|
|
|
|
!getOperand(1)->getType().isa<RankedTensorType>())
|
|
|
|
|
if (!getOperand(0).getType().isa<RankedTensorType>() ||
|
|
|
|
|
!getOperand(1).getType().isa<RankedTensorType>())
|
|
|
|
|
return;
|
|
|
|
|
auto lhsTy = getOperand(0)->getType().cast<RankedTensorType>();
|
|
|
|
|
auto rhsTy = getOperand(1)->getType().cast<RankedTensorType>();
|
|
|
|
|
auto lhsTy = getOperand(0).getType().cast<RankedTensorType>();
|
|
|
|
|
auto rhsTy = getOperand(1).getType().cast<RankedTensorType>();
|
|
|
|
|
SmallVector<int64_t, 2> dims;
|
|
|
|
|
dims.emplace_back(lhsTy.getShape()[0]);
|
|
|
|
|
dims.emplace_back(rhsTy.getShape()[1]);
|
|
|
|
|
getResult()->setType(RankedTensorType::get(dims, lhsTy.getElementType()));
|
|
|
|
|
getResult().setType(RankedTensorType::get(dims, lhsTy.getElementType()));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// TODO:
|
|
|
|
@ -336,30 +336,30 @@ void ONNXMatMulOp::inferShapes() {
|
|
|
|
|
|
|
|
|
|
void ONNXGemmOp::inferShapes() {
|
|
|
|
|
// Cannot infer shape if no shape exists.
|
|
|
|
|
if (!getOperand(0)->getType().isa<RankedTensorType>() ||
|
|
|
|
|
!getOperand(1)->getType().isa<RankedTensorType>())
|
|
|
|
|
if (!getOperand(0).getType().isa<RankedTensorType>() ||
|
|
|
|
|
!getOperand(1).getType().isa<RankedTensorType>())
|
|
|
|
|
return;
|
|
|
|
|
auto lhsTy = getOperand(0)->getType().cast<RankedTensorType>();
|
|
|
|
|
auto rhsTy = getOperand(1)->getType().cast<RankedTensorType>();
|
|
|
|
|
auto lhsTy = getOperand(0).getType().cast<RankedTensorType>();
|
|
|
|
|
auto rhsTy = getOperand(1).getType().cast<RankedTensorType>();
|
|
|
|
|
SmallVector<int64_t, 2> dims;
|
|
|
|
|
dims.emplace_back(lhsTy.getShape()[0]);
|
|
|
|
|
dims.emplace_back(rhsTy.getShape()[1]);
|
|
|
|
|
getResult()->setType(RankedTensorType::get(dims, lhsTy.getElementType()));
|
|
|
|
|
getResult().setType(RankedTensorType::get(dims, lhsTy.getElementType()));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// FullGemm
|
|
|
|
|
|
|
|
|
|
void ONNXFullGemmOp::inferShapes() {
|
|
|
|
|
// Cannot infer shape if no shape exists.
|
|
|
|
|
if (!getOperand(0)->getType().isa<RankedTensorType>() ||
|
|
|
|
|
!getOperand(1)->getType().isa<RankedTensorType>())
|
|
|
|
|
if (!getOperand(0).getType().isa<RankedTensorType>() ||
|
|
|
|
|
!getOperand(1).getType().isa<RankedTensorType>())
|
|
|
|
|
return;
|
|
|
|
|
auto lhsTy = getOperand(0)->getType().cast<RankedTensorType>();
|
|
|
|
|
auto rhsTy = getOperand(1)->getType().cast<RankedTensorType>();
|
|
|
|
|
auto lhsTy = getOperand(0).getType().cast<RankedTensorType>();
|
|
|
|
|
auto rhsTy = getOperand(1).getType().cast<RankedTensorType>();
|
|
|
|
|
SmallVector<int64_t, 2> dims;
|
|
|
|
|
dims.emplace_back(lhsTy.getShape()[0]);
|
|
|
|
|
dims.emplace_back(rhsTy.getShape()[1]);
|
|
|
|
|
getResult()->setType(RankedTensorType::get(dims, lhsTy.getElementType()));
|
|
|
|
|
getResult().setType(RankedTensorType::get(dims, lhsTy.getElementType()));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// TODO:
|
|
|
|
@ -372,11 +372,11 @@ void ONNXFullGemmOp::inferShapes() {
|
|
|
|
|
|
|
|
|
|
void ONNXReshapeOp::inferShapes() {
|
|
|
|
|
// Cannot infer shape if no shape tensor is specified.
|
|
|
|
|
if (!getOperand(1)->getType().isa<RankedTensorType>())
|
|
|
|
|
if (!getOperand(1).getType().isa<RankedTensorType>())
|
|
|
|
|
emitError("Shape tensor not ranked.");
|
|
|
|
|
|
|
|
|
|
auto inputTensorTy = getOperand(0)->getType().cast<RankedTensorType>();
|
|
|
|
|
auto shapeTensorTy = getOperand(1)->getType().cast<RankedTensorType>();
|
|
|
|
|
auto inputTensorTy = getOperand(0).getType().cast<RankedTensorType>();
|
|
|
|
|
auto shapeTensorTy = getOperand(1).getType().cast<RankedTensorType>();
|
|
|
|
|
|
|
|
|
|
// Only rank 1 shape tensors are supported.
|
|
|
|
|
if (shapeTensorTy.getShape().size() != 1)
|
|
|
|
@ -392,7 +392,7 @@ void ONNXReshapeOp::inferShapes() {
|
|
|
|
|
for (int i = 0; i < outputRank; ++i)
|
|
|
|
|
dims.emplace_back(-1);
|
|
|
|
|
|
|
|
|
|
getResult()->setType(
|
|
|
|
|
getResult().setType(
|
|
|
|
|
RankedTensorType::get(dims, inputTensorTy.getElementType()));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -402,16 +402,16 @@ void ONNXReshapeOp::inferShapes() {
|
|
|
|
|
|
|
|
|
|
void ONNXTransposeOp::inferShapes() {
|
|
|
|
|
// Cannot infer shape if no shape exists.
|
|
|
|
|
if (!getOperand()->getType().isa<RankedTensorType>())
|
|
|
|
|
if (!getOperand().getType().isa<RankedTensorType>())
|
|
|
|
|
emitError("Shape tensor not ranked.");
|
|
|
|
|
|
|
|
|
|
// Naive transposition which handles the default case of
|
|
|
|
|
// reversing the shape of the tensor (similar to numpy.transpose).
|
|
|
|
|
// TODO: Once attributes are supported we can handle the case where the
|
|
|
|
|
// transposition uses a permutation vector to interchange the axes.
|
|
|
|
|
auto arrayTy = getOperand()->getType().cast<RankedTensorType>();
|
|
|
|
|
auto arrayTy = getOperand().getType().cast<RankedTensorType>();
|
|
|
|
|
SmallVector<int64_t, 2> dims(llvm::reverse(arrayTy.getShape()));
|
|
|
|
|
getResult()->setType(RankedTensorType::get(dims, arrayTy.getElementType()));
|
|
|
|
|
getResult().setType(RankedTensorType::get(dims, arrayTy.getElementType()));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|