165 KiB
Dialect 'onnx' definition
[TOC]
Operation definition
onnx.Abs (ONNXAbsOp)
ONNX Abs operation
Description:
"Absolute takes one input data (Tensor) and produces one output data" "(Tensor) where the absolute is, y = abs(x), is applied to" "the tensor elementwise."
Operands:
X
: memref of any type values or tensor of any type values
Attributes:
Results:
Y
: memref of any type values or tensor of any type values
onnx.Acos (ONNXAcosOp)
ONNX Acos operation
Description:
"Calculates the arccosine (inverse of cosine) of the given input tensor, element-wise."
Operands:
input
: memref of any type values or tensor of any type values
Attributes:
Results:
output
: memref of any type values or tensor of any type values
onnx.Acosh (ONNXAcoshOp)
ONNX Acosh operation
Description:
"Calculates the hyperbolic arccosine of the given input tensor element-wise."
Operands:
input
: memref of any type values or tensor of any type values
Attributes:
Results:
output
: memref of any type values or tensor of any type values
onnx.Add (ONNXAddOp)
ONNX Add operation
Description:
"Performs element-wise binary addition (with Numpy-style broadcasting support)." "" "This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check the doc."
Operands:
A
: memref of any type values or tensor of any type valuesB
: memref of any type values or tensor of any type values
Attributes:
Results:
C
: memref of any type values or tensor of any type values
onnx.And (ONNXAndOp)
ONNX And operation
Description:
"Returns the tensor resulted from performing the and
logical operation"
"elementwise on the input tensors A
and B
(with Numpy-style broadcasting support)."
""
"This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check the doc."
Operands:
A
: memref of any type values or tensor of any type valuesB
: memref of any type values or tensor of any type values
Attributes:
Results:
C
: memref of any type values or tensor of any type values
onnx.ArgMax (ONNXArgMaxOp)
ONNX ArgMax operation
Description:
"Computes the indices of the max elements of the input tensor's element along the " "provided axis. The resulted tensor has the same rank as the input if keepdims equal 1." "If keepdims equal 0, then the resulted tensor have the reduced dimension pruned. " "The type of the output tensor is integer."
Operands:
data
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
axis |
IntegerAttr |
64-bit integer attribute attribute |
keepdims |
IntegerAttr |
64-bit integer attribute attribute |
Results:
reduced
: memref of any type values or tensor of any type values
onnx.ArgMin (ONNXArgMinOp)
ONNX ArgMin operation
Description:
"Computes the indices of the min elements of the input tensor's element along the " "provided axis. The resulted tensor has the same rank as the input if keepdims equal 1." "If keepdims equal 0, then the resulted tensor have the reduced dimension pruned. " "The type of the output tensor is integer."
Operands:
data
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
axis |
IntegerAttr |
64-bit integer attribute attribute |
keepdims |
IntegerAttr |
64-bit integer attribute attribute |
Results:
reduced
: memref of any type values or tensor of any type values
onnx.Asin (ONNXAsinOp)
ONNX Asin operation
Description:
"Calculates the arcsine (inverse of sine) of the given input tensor, element-wise."
Operands:
input
: memref of any type values or tensor of any type values
Attributes:
Results:
output
: memref of any type values or tensor of any type values
onnx.Asinh (ONNXAsinhOp)
ONNX Asinh operation
Description:
"Calculates the hyperbolic arcsine of the given input tensor element-wise."
Operands:
input
: memref of any type values or tensor of any type values
Attributes:
Results:
output
: memref of any type values or tensor of any type values
onnx.Atan (ONNXAtanOp)
ONNX Atan operation
Description:
"Calculates the arctangent (inverse of tangent) of the given input tensor, element-wise."
Operands:
input
: memref of any type values or tensor of any type values
Attributes:
Results:
output
: memref of any type values or tensor of any type values
onnx.Atanh (ONNXAtanhOp)
ONNX Atanh operation
Description:
"Calculates the hyperbolic arctangent of the given input tensor element-wise."
Operands:
input
: memref of any type values or tensor of any type values
Attributes:
Results:
output
: memref of any type values or tensor of any type values
onnx.AveragePool (ONNXAveragePoolOp)
ONNX AveragePool operation
Description:
"AveragePool consumes an input tensor X and applies average pooling across"
" the tensor according to kernel sizes, stride sizes, and pad lengths."
" average pooling consisting of computing the average on all values of a"
" subset of the input tensor according to the kernel size and downsampling the"
" data into the output tensor Y for further processing. The output spatial shape will be following:"
" " " output_spatial_shape[i] = floor((input_spatial_shape[i] + pad_shape[i] - kernel_spatial_shape[i]) / strides_spatial_shape[i] + 1)" "
"
" or"
" " " output_spatial_shape[i] = ceil((input_spatial_shape[i] + pad_shape[i] - kernel_spatial_shape[i]) / strides_spatial_shape[i] + 1)" "
"
" if ceil_mode is enabled"
""
" " " * pad_shape[i] is sum of pads along axis i" "
"
""
" auto_pad
is a DEPRECATED attribute. If you are using them currently, the output spatial shape will be following:"
" " " VALID: output_spatial_shape[i] = ceil((input_spatial_shape[i] - kernel_spatial_shape[i] + 1) / strides_spatial_shape[i])" " SAME_UPPER or SAME_LOWER: output_spatial_shape[i] = ceil(input_spatial_shape[i] / strides_spatial_shape[i])" "
"
" And pad shape will be following if SAME_UPPER
or SAME_LOWER
:"
" " " pad_shape[i] = (output_spatial_shape[i] - 1) * strides_spatial_shape[i] + kernel_spatial_shape[i] - input_spatial_shape[i]" "
"
" The output of each pooling window is divided by the number of elements (exclude pad when attribute count_include_pad is zero)."
" "
Operands:
X
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
auto_pad |
StringAttr |
string attribute attribute |
ceil_mode |
IntegerAttr |
64-bit integer attribute attribute |
count_include_pad |
IntegerAttr |
64-bit integer attribute attribute |
kernel_shape |
ArrayAttr |
64-bit integer array attribute attribute |
pads |
ArrayAttr |
64-bit integer array attribute attribute |
strides |
ArrayAttr |
64-bit integer array attribute attribute |
Results:
Y
: memref of any type values or tensor of any type values
onnx.BatchNormalization (ONNXBatchNormalizationOp)
ONNX BatchNormalization operation
Description:
"Carries out batch normalization as described in the paper" "https://arxiv.org/abs/1502.03167. Depending on the mode it is being run," "there are multiple cases for the number of outputs, which we list below:" "" "Output case #1: Y, mean, var, saved_mean, saved_var (training mode)" "Output case #2: Y (test mode)" "" "For previous (depreciated) non-spatial cases, implementors are suggested" "to flatten the input shape to (N x CD1D2 ..*Dn) before a BatchNormalization Op." "This operator has optional inputs/outputs. See the doc for more details about the representation of optional arguments. An empty string may be used in the place of an actual argument's name to indicate a missing argument. Trailing optional arguments (those not followed by an argument that is present) may also be simply omitted."
Operands:
X
: memref of any type values or tensor of any type valuesscale
: memref of any type values or tensor of any type valuesB
: memref of any type values or tensor of any type valuesmean
: memref of any type values or tensor of any type valuesvar
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
epsilon |
FloatAttr |
32-bit float attribute attribute |
momentum |
FloatAttr |
32-bit float attribute attribute |
Results:
Y
: memref of any type values or tensor of any type valuesout_mean
: memref of any type values or tensor of any type valuesout_var
: memref of any type values or tensor of any type valuessaved_mean
: memref of any type values or tensor of any type valuessaved_var
: memref of any type values or tensor of any type values
onnx.BatchNormalizationTestMode (ONNXBatchNormalizationTestModeOp)
ONNX BatchNormalization operation in test mode
Description:
"Carries out batch normalization as described in the paper" "https://arxiv.org/abs/1502.03167. Depending on the mode it is being run," "there are multiple cases for the number of outputs, which we list below:" "" "Output case #1: Y, mean, var, saved_mean, saved_var (training mode)" "Output case #2: Y (test mode)" "" "For previous (depreciated) non-spatial cases, implementors are suggested" "to flatten the input shape to (N x CD1D2 ..*Dn) before a BatchNormalization Op." "This operator has optional inputs/outputs. See the doc for more details about the representation of optional arguments. An empty string may be used in the place of an actual argument's name to indicate a missing argument. Trailing optional arguments (those not followed by an argument that is present) may also be simply omitted."
Operands:
X
: memref of any type values or tensor of any type valuesscale
: memref of any type values or tensor of any type valuesB
: memref of any type values or tensor of any type valuesmean
: memref of any type values or tensor of any type valuesvar
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
epsilon |
FloatAttr |
32-bit float attribute attribute |
momentum |
FloatAttr |
32-bit float attribute attribute |
Results:
o_Y
: memref of any type values or tensor of any type values
onnx.BitShift (ONNXBitShiftOp)
ONNX BitShift operation
Description:
"Bitwise shift operator performs element-wise operation. For each input element, if the" " attribute "direction" is "RIGHT", this operator moves its binary representation toward" " the right side so that the input value is effectively decreased. If the attribute "direction"" " is "LEFT", bits of binary representation moves toward the left side, which results the" " increase of its actual value. The input X is the tensor to be shifted and another input" " Y specifies the amounts of shifting. For example, if "direction" is "Right", X is [1, 4]," " and S is [1, 1], the corresponding output Z would be [0, 2]. If "direction" is "LEFT" with" " X=[1, 2] and S=[1, 2], the corresponding output Y would be [2, 8]." " " " Because this operator supports Numpy-style broadcasting, X's and Y's shapes are" " not necessarily identical." "This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check the doc."
Operands:
X
: memref of any type values or tensor of any type valuesY
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
direction |
StringAttr |
string attribute attribute |
Results:
Z
: memref of any type values or tensor of any type values
onnx.Cast (ONNXCastOp)
ONNX Cast operation
Description:
"The operator casts the elements of a given input tensor to a data type" "specified by the 'to' argument and returns an output tensor of the same size in" "the converted type. The 'to' argument must be one of the data types specified" "in the 'DataType' enum field in the TensorProto message." "" "Casting from string tensor in plain (e.g., "3.14" and "1000") and scientific numeric representations" "(e.g., "1e-5" and "1E8") to float types is supported. For example, converting string "100.5" to an integer may" "result 100. There are some string literals reserved for special floating-point values;" ""+INF" (and "INF"), "-INF", and "NaN" are positive infinity, negative infinity, and not-a-number, respectively." "Any string which can exactly match "+INF" in a case-insensitive way would be mapped to positive infinite. Similarly," "this case-insensitive rule is applied to "INF" and "NaN". When casting from numeric tensors" "to string tensors, plain floating-point representation (such as "314.15926") would be used. " "Converting non-numerical-literal string such as "Hello World!" is an undefined behavior. Cases " "of converting string representing floating-point arithmetic value, such as "2.718", to INT is an undefined behavior." "" "Conversion from a numerical type to any numerical type is always allowed." "User must be aware of precision loss and value change caused by range difference between two types." "For example, a 64-bit float 3.1415926459 may be round to a 32-bit float 3.141592. Similarly, converting" "an integer 36 to Boolean may produce 1 because we truncate bits which can't be stored in the targeted type."
Operands:
input
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
to |
IntegerAttr |
64-bit integer attribute attribute |
Results:
output
: memref of any type values or tensor of any type values
onnx.Ceil (ONNXCeilOp)
ONNX Ceil operation
Description:
"Ceil takes one input data (Tensor) and produces one output data" "(Tensor) where the ceil is, y = ceil(x), is applied to" "the tensor elementwise."
Operands:
X
: memref of any type values or tensor of any type values
Attributes:
Results:
Y
: memref of any type values or tensor of any type values
onnx.Clip (ONNXClipOp)
ONNX Clip operation
Description:
"Clip operator limits the given input within an interval. The interval is" "specified by the inputs 'min' and 'max'. They default to" "numeric_limits::lowest() and numeric_limits::max(), respectively."
Operands:
input
: memref of any type values or tensor of any type valuesmin
: memref of any type values or tensor of any type valuesmax
: memref of any type values or tensor of any type values
Attributes:
Results:
output
: memref of any type values or tensor of any type values
onnx.Compress (ONNXCompressOp)
ONNX Compress operation
Description:
"Selects slices from an input tensor along a given axis where condition evaluates to True for each axis index." " In case axis is not provided, input is flattened before elements are selected." " Compress behaves like numpy.compress: https://docs.scipy.org/doc/numpy/reference/generated/numpy.compress.html" " "
Operands:
input
: memref of any type values or tensor of any type valuescondition
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
axis |
IntegerAttr |
64-bit integer attribute attribute |
Results:
output
: memref of any type values or tensor of any type values
onnx.ConcatFromSequence (ONNXConcatFromSequenceOp)
ONNX ConcatFromSequence operation
Description:
"Concatenate a sequence of tensors into a single tensor." "All input tensors must have the same shape, except for the dimension size of the axis to concatenate on." "By default 'new_axis' is 0, the behavior is similar to numpy.concatenate." "When 'new_axis' is 1, the behavior is similar to numpy.stack."
Operands:
input_sequence
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
axis |
IntegerAttr |
64-bit integer attribute attribute |
new_axis |
IntegerAttr |
64-bit integer attribute attribute |
Results:
concat_result
: memref of any type values or tensor of any type values
onnx.Concat (ONNXConcatOp)
ONNX Concat operation
Description:
"Concatenate a list of tensors into a single tensor. All input tensors must have the same shape, except for the dimension size of the axis to concatenate on."
Operands:
inputs
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
axis |
IntegerAttr |
64-bit integer attribute attribute |
Results:
concat_result
: memref of any type values or tensor of any type values
onnx.ConstantOfShape (ONNXConstantOfShapeOp)
ONNX ConstantOfShape operation
Description:
"Generate a tensor with given value and shape."
Operands:
input
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
value |
Attribute |
any attribute attribute |
Results:
output
: memref of any type values or tensor of any type values
onnx.Constant (ONNXConstantOp)
ONNX Constant operation
Description:
"A constant tensor. Exactly one of the two attributes, either value or sparse_value," "must be specified."
Operands:
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
sparse_value |
Attribute |
any attribute attribute |
value |
Attribute |
any attribute attribute |
Results:
output
: memref of any type values or tensor of any type values
onnx.ConvInteger (ONNXConvIntegerOp)
ONNX ConvInteger operation
Description:
"The integer convolution operator consumes an input tensor, its zero-point, a filter, and its zero-point," "and computes the output. The production MUST never overflow. The accumulation may overflow if and only if in 32 bits."
Operands:
x
: memref of any type values or tensor of any type valuesw
: memref of any type values or tensor of any type valuesx_zero_point
: memref of any type values or tensor of any type valuesw_zero_point
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
auto_pad |
StringAttr |
string attribute attribute |
dilations |
ArrayAttr |
64-bit integer array attribute attribute |
group |
IntegerAttr |
64-bit integer attribute attribute |
kernel_shape |
ArrayAttr |
64-bit integer array attribute attribute |
pads |
ArrayAttr |
64-bit integer array attribute attribute |
strides |
ArrayAttr |
64-bit integer array attribute attribute |
Results:
y
: memref of any type values or tensor of any type values
onnx.ConvNoBias (ONNXConvNoBiasOp)
ONNX Conv operation with no Bias operand.
Description:
"The convolution operator consumes an input tensor and a filter, and" "computes the output."
Operands:
X
: memref of any type values or tensor of any type valuesW
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
auto_pad |
StringAttr |
string attribute attribute |
dilations |
ArrayAttr |
64-bit integer array attribute attribute |
group |
IntegerAttr |
64-bit integer attribute attribute |
kernel_shape |
ArrayAttr |
64-bit integer array attribute attribute |
pads |
ArrayAttr |
64-bit integer array attribute attribute |
strides |
ArrayAttr |
64-bit integer array attribute attribute |
Results:
o_Y
: memref of any type values or tensor of any type values
onnx.Conv (ONNXConvOp)
ONNX Conv operation
Description:
"The convolution operator consumes an input tensor and a filter, and" "computes the output."
Operands:
X
: memref of any type values or tensor of any type valuesW
: memref of any type values or tensor of any type valuesB
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
auto_pad |
StringAttr |
string attribute attribute |
dilations |
ArrayAttr |
64-bit integer array attribute attribute |
group |
IntegerAttr |
64-bit integer attribute attribute |
kernel_shape |
ArrayAttr |
64-bit integer array attribute attribute |
pads |
ArrayAttr |
64-bit integer array attribute attribute |
strides |
ArrayAttr |
64-bit integer array attribute attribute |
Results:
Y
: memref of any type values or tensor of any type values
onnx.ConvTranspose (ONNXConvTransposeOp)
ONNX ConvTranspose operation
Description:
"The convolution transpose operator consumes an input tensor and a filter," "and computes the output." "" "If the pads parameter is provided the shape of the output is calculated via the following equation:" "" " output_shape[i] = stride[i] * (input_size[i] - 1) + output_padding[i] + ((kernel_shape[i] - 1) * dilations[i] + 1) - pads[start_i] - pads[end_i]" "" "output_shape can also be explicitly specified in which case pads values are auto generated using these equations:" "" " total_padding[i] = stride[i] * (input_size[i] - 1) + output_padding[i] + ((kernel_shape[i] - 1) * dilations[i] + 1) - output_shape[i]" " If (auto_pads != SAME_UPPER): pads[start_i] = total_padding[i]/2; pads[end_i] = total_padding[i] - (total_padding[i]/2)" " Else: pads[start_i] = total_padding[i] - (total_padding[i]/2); pads[end_i] = (total_padding[i]/2)." "" " "
Operands:
X
: memref of any type values or tensor of any type valuesW
: memref of any type values or tensor of any type valuesB
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
auto_pad |
StringAttr |
string attribute attribute |
dilations |
ArrayAttr |
64-bit integer array attribute attribute |
group |
IntegerAttr |
64-bit integer attribute attribute |
kernel_shape |
ArrayAttr |
64-bit integer array attribute attribute |
output_padding |
ArrayAttr |
64-bit integer array attribute attribute |
output_shape |
ArrayAttr |
64-bit integer array attribute attribute |
pads |
ArrayAttr |
64-bit integer array attribute attribute |
strides |
ArrayAttr |
64-bit integer array attribute attribute |
Results:
Y
: memref of any type values or tensor of any type values
onnx.Cos (ONNXCosOp)
ONNX Cos operation
Description:
"Calculates the cosine of the given input tensor, element-wise."
Operands:
input
: memref of any type values or tensor of any type values
Attributes:
Results:
output
: memref of any type values or tensor of any type values
onnx.Cosh (ONNXCoshOp)
ONNX Cosh operation
Description:
"Calculates the hyperbolic cosine of the given input tensor element-wise."
Operands:
input
: memref of any type values or tensor of any type values
Attributes:
Results:
output
: memref of any type values or tensor of any type values
onnx.CumSum (ONNXCumSumOp)
ONNX CumSum operation
Description:
"Performs cumulative sum of the input elements along the given axis."
"By default, it will do the sum inclusively meaning the first element is copied as is."
"Through an exclusive
attribute, this behavior can change to exclude the first element."
"It can also perform summation in the opposite direction of the axis. For that, set reverse
attribute to 1."
""
"Example:"
"" "input_x = [1, 2, 3]" "axis=0" "output = [1, 3, 6]" "exclusive=1" "output = [0, 1, 3]" "exclusive=0" "reverse=1" "output = [6, 5, 3]" "exclusive=1" "reverse=1" "output = [5, 3, 0]" "
"
" "
Operands:
x
: memref of any type values or tensor of any type valuesaxis
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
exclusive |
IntegerAttr |
64-bit integer attribute attribute |
reverse |
IntegerAttr |
64-bit integer attribute attribute |
Results:
y
: memref of any type values or tensor of any type values
onnx.DepthToSpace (ONNXDepthToSpaceOp)
ONNX DepthToSpace operation
Description:
"DepthToSpace rearranges (permutes) data from depth into blocks of spatial data."
"This is the reverse transformation of SpaceToDepth. More specifically, this op outputs a copy of"
"the input tensor where values from the depth dimension are moved in spatial blocks to the height"
"and width dimensions. By default, mode
= DCR
."
"In the DCR mode, elements along the depth dimension from the input tensor are rearranged in the"
"following order: depth, column, and then row. The output y is computed from the input x as below:"
""
"b, c, h, w = x.shape"
""
"tmp = np.reshape(x, [b, blocksize, blocksize, c // (blocksize2), h, w])"
""
"tmp = np.transpose(tmp, [0, 3, 4, 1, 5, 2])"
""
"y = np.reshape(tmp, [b, c // (blocksize2), h * blocksize, w * blocksize])"
""
""
"In the CRD mode, elements along the depth dimension from the input tensor are rearranged in the"
"following order: column, row, and the depth. The output y is computed from the input x as below:"
""
"b, c, h, w = x.shape"
""
"tmp = np.reshape(x, [b, c // (blocksize ** 2), blocksize, blocksize, h, w])"
""
"tmp = np.transpose(tmp, [0, 1, 4, 2, 5, 3])"
""
"y = np.reshape(tmp, [b, c // (blocksize ** 2), h * blocksize, w * blocksize])"
""
Operands:
input
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
blocksize |
IntegerAttr |
64-bit integer attribute attribute |
mode |
StringAttr |
string attribute attribute |
Results:
output
: memref of any type values or tensor of any type values
onnx.DequantizeLinear (ONNXDequantizeLinearOp)
ONNX DequantizeLinear operation
Description:
"The linear dequantization operator. It consumes a quantized tensor, a scale, a zero point to compute the full precision tensor." "The dequantization formula is y = (x - x_zero_point) * x_scale. 'x_scale' and 'x_zero_point' must have same shape." "'x_zero_point' and 'x' must have same type. 'x' and 'y' must have same shape. In the case of dequantizing int32," "there's no zero point (zero point is supposed to be 0)."
Operands:
x
: memref of any type values or tensor of any type valuesx_scale
: memref of any type values or tensor of any type valuesx_zero_point
: memref of any type values or tensor of any type values
Attributes:
Results:
y
: memref of any type values or tensor of any type values
onnx.Det (ONNXDetOp)
ONNX Det operation
Description:
"Det calculates determinant of a square matrix or batches of square matrices."
"Det takes one input tensor of shape [*, M, M]
, where *
is zero or more batch dimensions,"
"and the inner-most 2 dimensions form square matrices."
"The output is a tensor of shape [*]
, containing the determinants of all input submatrices."
"e.g., When the input is 2-D, the output is a scalar(shape is empty: []
)."
Operands:
X
: memref of any type values or tensor of any type values
Attributes:
Results:
Y
: memref of any type values or tensor of any type values
onnx.Div (ONNXDivOp)
ONNX Div operation
Description:
"Performs element-wise binary division (with Numpy-style broadcasting support)." "" "This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check the doc."
Operands:
A
: memref of any type values or tensor of any type valuesB
: memref of any type values or tensor of any type values
Attributes:
Results:
C
: memref of any type values or tensor of any type values
onnx.Dropout (ONNXDropoutOp)
ONNX Dropout operation
Description:
"Dropout takes one input floating tensor and produces two tensor outputs,"
"output (floating tensor) and mask (Tensor<bool>
). Depending on whether it is"
"in test mode or not, the output Y will either be a random dropout, or a simple"
"copy of the input. Note that our implementation of Dropout does scaling in"
"the training phase, so during testing nothing needs to be done."
"This operator has optional inputs/outputs. See the doc for more details about the representation of optional arguments. An empty string may be used in the place of an actual argument's name to indicate a missing argument. Trailing optional arguments (those not followed by an argument that is present) may also be simply omitted."
Operands:
data
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
ratio |
FloatAttr |
32-bit float attribute attribute |
Results:
output
: memref of any type values or tensor of any type valuesmask
: memref of any type values or tensor of any type values
onnx.DynamicQuantizeLinear (ONNXDynamicQuantizeLinearOp)
ONNX DynamicQuantizeLinear operation
Description:
"A Function to fuse calculation for Scale, Zero Point and FP32->8Bit convertion of FP32 Input data."
"Outputs Scale, ZeroPoint and Quantized Input for a given FP32 Input."
"Scale is calculated as:"
"" " y_scale = (max(x) - min(x))/(qmax - qmin)" " * where qmax and qmin are max and min values for quantization range .i.e [0, 255] in case of uint8" " * data range is adjusted to include 0." "
"
"Zero point is calculated as:"
"" "intermediate_zero_point = (qmin - min(x))/(qmax - qmin)" "y_zero_point = cast(round(saturate(itermediate_zero_point)))" "* where qmax and qmin are max and min values for quantization range .i.e [0, 255] in case of uint8" "* for saturation, it saturates to [0, 255] if it's uint8, or [-127, 127] if it's int8. Right now only uint8 is supported." "* rounding to nearest ties to even." "
"
"Data quantization formula is:"
"" "y = saturate (round (x / y_scale) + y_zero_point)" "* for saturation, it saturates to [0, 255] if it's uint8, or [-127, 127] if it's int8. Right now only uint8 is supported." "* rounding to nearest ties to even." "
"
Operands:
x
: memref of any type values or tensor of any type values
Attributes:
Results:
y
: memref of any type values or tensor of any type valuesy_scale
: memref of any type values or tensor of any type valuesy_zero_point
: memref of any type values or tensor of any type values
onnx.Elu (ONNXEluOp)
ONNX Elu operation
Description:
"Elu takes one input data (Tensor) and produces one output data"
"(Tensor) where the function f(x) = alpha * (exp(x) - 1.) for x <" "0
, f(x) = x for x >= 0
., is applied to the tensor elementwise."
""
Operands:
X
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
alpha |
FloatAttr |
32-bit float attribute attribute |
Results:
Y
: memref of any type values or tensor of any type values
onnx.EntryPoint (ONNXEntryPointOp)
Indicate ONNX entry point
Description:
The "onnx.EntryPoint" function indicates the main entry point of ONNX model.
Operands:
Attributes:
Results:
onnx.Equal (ONNXEqualOp)
ONNX Equal operation
Description:
"Returns the tensor resulted from performing the equal
logical operation"
"elementwise on the input tensors A
and B
(with Numpy-style broadcasting support)."
""
"This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check the doc."
Operands:
A
: memref of any type values or tensor of any type valuesB
: memref of any type values or tensor of any type values
Attributes:
Results:
C
: memref of any type values or tensor of any type values
onnx.Erf (ONNXErfOp)
ONNX Erf operation
Description:
"Computes the error function of the given input tensor element-wise."
Operands:
input
: memref of any type values or tensor of any type values
Attributes:
Results:
output
: memref of any type values or tensor of any type values
onnx.Exp (ONNXExpOp)
ONNX Exp operation
Description:
"Calculates the exponential of the given input tensor, element-wise."
Operands:
input
: memref of any type values or tensor of any type values
Attributes:
Results:
output
: memref of any type values or tensor of any type values
onnx.Expand (ONNXExpandOp)
ONNX Expand operation
Description:
"Broadcast the input tensor following the given shape and the broadcast rule." "The broadcast rule is similar to numpy.array(input) * numpy.ones(shape):" "Dimensions are right alignment;" "Two corresponding dimension must have the same value, or one of them is equal to 1." "Also, this operator is similar to numpy.broadcast_to(input, shape)," "but the major difference is numpy.broadcast_to() does not allow shape to be smaller than input.size()." "It is possible that the output.shape is not equal to shape, when some dimensions in shape is equal to 1," "or the shape.ndim < input.shape.ndim."
Operands:
input
: memref of any type values or tensor of any type valuesshape
: memref of any type values or tensor of any type values
Attributes:
Results:
output
: memref of any type values or tensor of any type values
onnx.EyeLike (ONNXEyeLikeOp)
ONNX EyeLike operation
Description:
"Generate a 2D tensor (matrix) with ones on the diagonal and zeros everywhere else. Only 2D" "tensors are supported, i.e. input T1 must be of rank 2. The shape of the output tensor is the" "same as the input tensor. The data type can be specified by the 'dtype' argument. If" "'dtype' is not specified, then the type of input tensor is used. By default, the main diagonal" "is populated with ones, but attribute 'k' can be used to populate upper or lower diagonals." "The 'dtype' argument must be one of the data types specified in the 'DataType' enum field in the" "TensorProto message and be valid as an output type."
Operands:
input
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
dtype |
IntegerAttr |
64-bit integer attribute attribute |
k |
IntegerAttr |
64-bit integer attribute attribute |
Results:
output
: memref of any type values or tensor of any type values
onnx.Flatten (ONNXFlattenOp)
ONNX Flatten operation
Description:
"Flattens the input tensor into a 2D matrix. If input tensor has shape" "(d_0, d_1, ... d_n) then the output will have shape" "(d_0 X d_1 ... d_(axis-1), d_axis X d_(axis+1) ... X dn)."
Operands:
input
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
axis |
IntegerAttr |
64-bit integer attribute attribute |
Results:
output
: memref of any type values or tensor of any type values
onnx.Floor (ONNXFloorOp)
ONNX Floor operation
Description:
"Floor takes one input data (Tensor) and produces one output data" "(Tensor) where the floor is, y = floor(x), is applied to" "the tensor elementwise."
Operands:
X
: memref of any type values or tensor of any type values
Attributes:
Results:
Y
: memref of any type values or tensor of any type values
onnx.GRU (ONNXGRUOp)
ONNX GRU operation
Description:
"Computes an one-layer GRU. This operator is usually supported via some custom"
"implementation such as CuDNN."
""
"Notations:"
""
"X
- input tensor"
""
"z
- update gate"
""
"r
- reset gate"
""
"h
- hidden gate"
""
"t
- time step (t-1 means previous time step)"
""
"W[zrh]
- W parameter weight matrix for update, reset, and hidden gates"
""
"R[zrh]
- R recurrence weight matrix for update, reset, and hidden gates"
""
"Wb[zrh]
- W bias vectors for update, reset, and hidden gates"
""
"Rb[zrh]
- R bias vectors for update, reset, and hidden gates"
""
"WB[zrh]
- W parameter weight matrix for backward update, reset, and hidden gates"
""
"RB[zrh]
- R recurrence weight matrix for backward update, reset, and hidden gates"
""
"WBb[zrh]
- W bias vectors for backward update, reset, and hidden gates"
""
"RBb[zrh]
- R bias vectors for backward update, reset, and hidden gates"
""
"H
- Hidden state"
""
"num_directions
- 2 if direction == bidirectional else 1"
""
"Activation functions:"
""
" Relu(x) - max(0, x)"
""
" Tanh(x) - (1 - e^{-2x})/(1 + e^{-2x})"
""
" Sigmoid(x) - 1/(1 + e^{-x})"
""
" (NOTE: Below are optional)"
""
" Affine(x) - alphax + beta"
""
" LeakyRelu(x) - x if x >= 0 else alpha * x"
""
" ThresholdedRelu(x) - x if x >= alpha else 0"
""
" ScaledTanh(x) - alphaTanh(betax)"
""
" HardSigmoid(x) - min(max(alphax + beta, 0), 1)"
""
" Elu(x) - x if x >= 0 else alpha*(e^x - 1)"
""
" Softsign(x) - x/(1 + |x|)"
""
" Softplus(x) - log(1 + e^x)"
""
"Equations (Default: f=Sigmoid, g=Tanh):"
""
" - zt = f(Xt*(Wz^T) + Ht-1*(Rz^T) + Wbz + Rbz)"
""
" - rt = f(Xt*(Wr^T) + Ht-1*(Rr^T) + Wbr + Rbr)"
""
" - ht = g(Xt*(Wh^T) + (rt (.) Ht-1)(Rh^T) + Rbh + Wbh) # default, when linear_before_reset = 0"
""
" - ht = g(Xt(Wh^T) + (rt (.) (Ht-1*(Rh^T) + Rbh)) + Wbh) # when linear_before_reset != 0"
""
" - Ht = (1 - zt) (.) ht + zt (.) Ht-1"
"This operator has optional inputs/outputs. See the doc for more details about the representation of optional arguments. An empty string may be used in the place of an actual argument's name to indicate a missing argument. Trailing optional arguments (those not followed by an argument that is present) may also be simply omitted."
Operands:
X
: memref of any type values or tensor of any type valuesW
: memref of any type values or tensor of any type valuesR
: memref of any type values or tensor of any type valuesB
: memref of any type values or tensor of any type valuessequence_lens
: memref of any type values or tensor of any type valuesinitial_h
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
activation_alpha |
ArrayAttr |
32-bit float array attribute attribute |
activation_beta |
ArrayAttr |
32-bit float array attribute attribute |
activations |
ArrayAttr |
string array attribute attribute |
clip |
FloatAttr |
32-bit float attribute attribute |
direction |
StringAttr |
string attribute attribute |
hidden_size |
IntegerAttr |
64-bit integer attribute attribute |
linear_before_reset |
IntegerAttr |
64-bit integer attribute attribute |
Results:
Y
: memref of any type values or tensor of any type valuesY_h
: memref of any type values or tensor of any type values
onnx.GatherElements (ONNXGatherElementsOp)
ONNX GatherElements operation
Description:
"GatherElements takes two inputs data
and indices
of the same rank r >= 1"
"and an optional attribute axis
that identifies an axis of data
"
"(by default, the outer-most axis, that is axis 0). It is an indexing operation"
"that produces its output by indexing into the input data tensor at index"
"positions determined by elements of the indices
tensor."
"Its output shape is the same as the shape of indices
and consists of one value"
"(gathered from the data
) for each element in indices
."
""
"For instance, in the 3-D case (r = 3), the output produced is determined"
"by the following equations: "
"" " out[i][j][k] = input[index[i][j][k]][j][k] if axis = 0," " out[i][j][k] = input[i][index[i][j][k]][k] if axis = 1," " out[i][j][k] = input[i][j][index[i][j][k]] if axis = 2," "
"
""
"This operator is also the inverse of ScatterElements. It is similar to Torch's gather operation."
""
"Example 1:"
"" " data = [" " [1, 2]," " [3, 4]," " ]" " indices = [" " [0, 0]," " [1, 0]," " ]" " axis = 1" " output = [" " [" " [1, 1]," " [4, 3]," " ]," " ]" "
"
"Example 2:"
"" " data = [" " [1, 2, 3]," " [4, 5, 6]," " [7, 8, 9]," " ]" " indices = [" " [1, 2, 0]," " [2, 0, 0]," " ]" " axis = 0" " output = [" " [" " [4, 8, 3]," " [7, 2, 3]," " ]," " ]" "
"
Operands:
data
: memref of any type values or tensor of any type valuesindices
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
axis |
IntegerAttr |
64-bit integer attribute attribute |
Results:
output
: memref of any type values or tensor of any type values
onnx.GatherND (ONNXGatherNDOp)
ONNX GatherND operation
Description:
"Given data
tensor of rank r
>= 1, and indices
tensor of rank q
>= 1, this operator gathers "
"slices of data
into an output tensor of rank q + r - indices_shape[-1] - 1
."
""
"indices
is an q-dimensional integer tensor, best thought of as a (q-1)
-dimensional tensor of index-tuples into data
, "
"where each element defines a slice of data
"
""
"Some salient points about the inputs' rank and shape:"
" "
"1) r >= 1 and q >= 1 are to be honored. There is no dependency condition to be met between ranks r
and q
"
""
"2) The indices_shape[-1]
should have a value between 1 (inclusive) and rank r
(inclusive) "
""
"3) All values in indices
are expected to be within bounds [-s, s-1] along axis of size s
(i.e.) -data_shape[i] <= indices[...,i] <= data_shape[i] - 1
."
" It is an error if any of the index values are out of bounds."
""
"The output is computed as follows:"
""
"The output tensor is obtained by mapping each index-tuple in the indices
tensor to the corresponding slice of the input data
."
" "
"1) If indices_shape[-1] > r
=> error condition"
""
"2) If indices_shape[-1] == r
, since the rank of indices
is q
, indices
can be thought of as a (q-1)
-dimensional tensor"
" containing 1-D tensors of dimension r
. Let us think of each such r
ranked tensor as indices_slice
. "
" Each scalar value corresponding to data[indices_slice]
is filled into the corresponding location of the (q-1)
-dimensional tensor "
" to form the output
tensor (Example 1 below)"
""
"3) If indices_shape[-1] < r
, since the rank of indices
is q
, indices
can be thought of as a (q-1)
-dimensional tensor"
" containing 1-D tensors of dimension < r
. Let us think of each such tensors as indices_slice
. "
" Each tensor slice corresponding to data[indices_slice , :]
is filled into the corresponding location of the (q-1)
-dimensional tensor "
" to form the output
tensor (Examples 2, 3, and 4 below)"
""
"This operator is the inverse of ScatterND
."
""
"Example 1
"
""
" data = 0,1],[2,3 # data_shape = [2, 2]"
""
" indices = 0,0],[1,1 # indices_shape = [2, 2]"
""
" output = [0,3] # output_shape = [2]"
""
"Example 2
"
""
" data = 0,1],[2,3 # data_shape = [2, 2]"
""
" indices = 1],[0 # indices_shape = [2, 1]"
""
" output = 2,3],[0,1 # output_shape = [2, 2]"
""
"Example 3
"
""
" data = [0,1],[2,3,4,5],[6,7] # data_shape = [2, 2, 2]"
""
" indices = 0,1],[1,0 # indices_shape = [2, 2]"
""
" output = 2,3],[4,5 # output_shape = [2, 2] "
""
"Example 4
"
""
" data = [0,1],[2,3,4,5],[6,7] # data_shape = [2, 2, 2]"
""
" indices = [0,1,1,0] # indices_shape = [2, 1, 2]"
""
" output = [2,3,4,5] # output_shape = [2, 1, 2] "
""
Operands:
data
: memref of any type values or tensor of any type valuesindices
: memref of any type values or tensor of any type values
Attributes:
Results:
output
: memref of any type values or tensor of any type values
onnx.Gather (ONNXGatherOp)
ONNX Gather operation
Description:
"Given data
tensor of rank r >= 1, and indices
tensor of rank q, gather"
"entries of the axis dimension of data
(by default outer-most one as axis=0) indexed by indices
, and concatenates"
"them in an output tensor of rank q + (r - 1)."
""
"axis = 0 :"
""
"Let"
"k = indices[i_{0}, ..., i_{q-1}]"
"Then"
"output[i_{0}, ..., i_{q-1}, j_{0}, ..., j_{r-2}] = input[k , j_{0}, ..., j_{r-2}]"
""
"" " data = [" " [1.0, 1.2]," " [2.3, 3.4]," " [4.5, 5.7]," " ]" " indices = [" " [0, 1]," " [1, 2]," " ]" " output = [" " [" " [1.0, 1.2]," " [2.3, 3.4]," " ]," " [" " [2.3, 3.4]," " [4.5, 5.7]," " ]," " ]" "
"
"axis = 1 :"
""
"Let"
"k = indices[i_{0}, ..., i_{q-1}]"
"Then"
"output[i_{0}, ..., i_{q-1}, j_{0}, ..., j_{r-2}] = input[j_{0}, k, j_{1}, ..., j_{r-2}]"
""
"" " data = [" " [1.0, 1.2, 1.9]," " [2.3, 3.4, 3.9]," " [4.5, 5.7, 5.9]," " ]" " indices = [" " [0, 2]," " ]" " axis = 1," " output = [" " [" " [1.0, 1.9]," " [2.3, 3.9]," " [4.5, 5.9]," " ]," " ]" "
"
Operands:
data
: memref of any type values or tensor of any type valuesindices
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
axis |
IntegerAttr |
64-bit integer attribute attribute |
Results:
output
: memref of any type values or tensor of any type values
onnx.GemmNoBias (ONNXGemmNoBiasOp)
ONNX general matrix multiply operation without bias.
Description:
The "onnx.Gemm" generic matrix multiplication without bias.
Operands:
A
: memref of any type values or tensor of any type valuesB
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
alpha |
FloatAttr |
32-bit float attribute attribute |
beta |
FloatAttr |
32-bit float attribute attribute |
transA |
IntegerAttr |
64-bit integer attribute attribute |
transB |
IntegerAttr |
64-bit integer attribute attribute |
Results:
o_Y
: memref of any type values or tensor of any type values
onnx.Gemm (ONNXGemmOp)
ONNX Gemm operation
Description:
"General Matrix multiplication:" "https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms#Level_3" "" "A' = transpose(A) if transA else A" "" "B' = transpose(B) if transB else B" "" "Compute Y = alpha * A' * B' + beta * C, where input tensor A has shape (M, K) or (K, M)," "input tensor B has shape (K, N) or (N, K), input tensor C is broadcastable to shape (M, N)," "and output tensor Y has shape (M, N). A will be transposed before doing the" "computation if attribute transA is non-zero, same for B and transB." "This operator supports unidirectional broadcasting (tensor C should be unidirectional broadcastable to tensor A * B); for more details please check the doc." "This operator has optional inputs/outputs. See the doc for more details about the representation of optional arguments. An empty string may be used in the place of an actual argument's name to indicate a missing argument. Trailing optional arguments (those not followed by an argument that is present) may also be simply omitted."
Operands:
A
: memref of any type values or tensor of any type valuesB
: memref of any type values or tensor of any type valuesC
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
alpha |
FloatAttr |
32-bit float attribute attribute |
beta |
FloatAttr |
32-bit float attribute attribute |
transA |
IntegerAttr |
64-bit integer attribute attribute |
transB |
IntegerAttr |
64-bit integer attribute attribute |
Results:
Y
: memref of any type values or tensor of any type values
onnx.GlobalAveragePool (ONNXGlobalAveragePoolOp)
ONNX GlobalAveragePool operation
Description:
"GlobalAveragePool consumes an input tensor X and applies average pooling across" " the values in the same channel. This is equivalent to AveragePool with kernel size" " equal to the spatial dimension of input tensor."
Operands:
X
: memref of any type values or tensor of any type values
Attributes:
Results:
Y
: memref of any type values or tensor of any type values
onnx.GlobalLpPool (ONNXGlobalLpPoolOp)
ONNX GlobalLpPool operation
Description:
"GlobalLpPool consumes an input tensor X and applies lp pool pooling across" " the values in the same channel. This is equivalent to LpPool with kernel size" " equal to the spatial dimension of input tensor."
Operands:
X
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
p |
IntegerAttr |
64-bit integer attribute attribute |
Results:
Y
: memref of any type values or tensor of any type values
onnx.GlobalMaxPool (ONNXGlobalMaxPoolOp)
ONNX GlobalMaxPool operation
Description:
"GlobalMaxPool consumes an input tensor X and applies max pooling across" " the values in the same channel. This is equivalent to MaxPool with kernel size" " equal to the spatial dimension of input tensor."
Operands:
X
: memref of any type values or tensor of any type values
Attributes:
Results:
Y
: memref of any type values or tensor of any type values
onnx.Greater (ONNXGreaterOp)
ONNX Greater operation
Description:
"Returns the tensor resulted from performing the greater
logical operation"
"elementwise on the input tensors A
and B
(with Numpy-style broadcasting support)."
""
"This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check the doc."
Operands:
A
: memref of any type values or tensor of any type valuesB
: memref of any type values or tensor of any type values
Attributes:
Results:
C
: memref of any type values or tensor of any type values
onnx.HardSigmoid (ONNXHardSigmoidOp)
ONNX HardSigmoid operation
Description:
"HardSigmoid takes one input data (Tensor) and produces one output data" "(Tensor) where the HardSigmoid function, y = max(0, min(1, alpha * x + beta))," "is applied to the tensor elementwise."
Operands:
X
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
alpha |
FloatAttr |
32-bit float attribute attribute |
beta |
FloatAttr |
32-bit float attribute attribute |
Results:
Y
: memref of any type values or tensor of any type values
onnx.Hardmax (ONNXHardmaxOp)
ONNX Hardmax operation
Description:
"The operator computes the hardmax (1 for the first maximum value, and 0 for all others) values for each layer in the batch" " of the given input." "" "The input does not need to explicitly be a 2D vector; rather, it will be" "coerced into one. For an arbitrary n-dimensional tensor" "input \in [a_0, a_1, ..., a_{k-1}, a_k, ..., a_{n-1}] and k is" "the axis provided, then input will be coerced into a 2-dimensional tensor with" "dimensions [a_0 * ... * a_{k-1}, a_k * ... * a_{n-1}]. For the default" "case where axis=1, this means the input tensor will be coerced into a 2D tensor" "of dimensions [a_0, a_1 * ... * a_{n-1}], where a_0 is often the batch size." "In this situation, we must have a_0 = N and a_1 * ... * a_{n-1} = D." "Each of these dimensions must be matched correctly, or else the operator" "will throw errors. The output tensor has the same shape" "and contains the hardmax values of the corresponding input."
Operands:
input
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
axis |
IntegerAttr |
64-bit integer attribute attribute |
Results:
output
: memref of any type values or tensor of any type values
onnx.Identity (ONNXIdentityOp)
ONNX Identity operation
Description:
"Identity operator"
Operands:
input
: memref of any type values or tensor of any type values
Attributes:
Results:
output
: memref of any type values or tensor of any type values
onnx.If (ONNXIfOp)
ONNX If operation
Description:
"If conditional"
Operands:
cond
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
else_branch |
Attribute |
any attribute attribute |
then_branch |
Attribute |
any attribute attribute |
Results:
outputs
: memref of any type values or tensor of any type values
onnx.InstanceNormalization (ONNXInstanceNormalizationOp)
ONNX InstanceNormalization operation
Description:
"Carries out instance normalization as described in the paper" "https://arxiv.org/abs/1607.08022." "" "y = scale * (x - mean) / sqrt(variance + epsilon) + B," "where mean and variance are computed per instance per channel." ""
Operands:
input
: memref of any type values or tensor of any type valuesscale
: memref of any type values or tensor of any type valuesB
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
epsilon |
FloatAttr |
32-bit float attribute attribute |
Results:
output
: memref of any type values or tensor of any type values
onnx.IsInf (ONNXIsInfOp)
ONNX IsInf operation
Description:
"Map infinity to true and other values to false."
Operands:
X
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
detect_negative |
IntegerAttr |
64-bit integer attribute attribute |
detect_positive |
IntegerAttr |
64-bit integer attribute attribute |
Results:
Y
: memref of any type values or tensor of any type values
onnx.IsNaN (ONNXIsNaNOp)
ONNX IsNaN operation
Description:
"Returns which elements of the input are NaN."
Operands:
X
: memref of any type values or tensor of any type values
Attributes:
Results:
Y
: memref of any type values or tensor of any type values
onnx.LRN (ONNXLRNOp)
ONNX LRN operation
Description:
"Local Response Normalization proposed in the AlexNet paper." "It normalizes over local input regions." "The local region is defined across the channels. For an element X[n, c, d1, ..., dk] in a tensor" "of shape (N x C x D1 x D2, ..., Dk), its region is" "{X[n, i, d1, ..., dk] | max(0, c - floor((size - 1) / 2)) <= i <= min(C - 1, c + ceil((size - 1) / 2))}." "" "square_sum[n, c, d1, ..., dk] = sum(X[n, i, d1, ..., dk] ^ 2)," "where max(0, c - floor((size - 1) / 2)) <= i <= min(C - 1, c + ceil((size - 1) / 2))." "" "Y[n, c, d1, ..., dk] = X[n, c, d1, ..., dk] / (bias + alpha / size * square_sum[n, c, d1, ..., dk] ) ^ beta"
Operands:
X
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
alpha |
FloatAttr |
32-bit float attribute attribute |
beta |
FloatAttr |
32-bit float attribute attribute |
bias |
FloatAttr |
32-bit float attribute attribute |
size |
IntegerAttr |
64-bit integer attribute attribute |
Results:
Y
: memref of any type values or tensor of any type values
onnx.LSTM (ONNXLSTMOp)
ONNX LSTM operation
Description:
"Computes an one-layer LSTM. This operator is usually supported via some"
"custom implementation such as CuDNN."
""
"Notations:"
""
"X
- input tensor"
""
"i
- input gate"
""
"o
- output gate"
""
"f
- forget gate"
""
"c
- cell gate"
""
"t
- time step (t-1 means previous time step)"
""
"W[iofc]
- W parameter weight matrix for input, output, forget, and cell gates"
""
"R[iofc]
- R recurrence weight matrix for input, output, forget, and cell gates"
""
"Wb[iofc]
- W bias vectors for input, output, forget, and cell gates"
""
"Rb[iofc]
- R bias vectors for input, output, forget, and cell gates"
""
"P[iof]
- P peephole weight vector for input, output, and forget gates"
""
"WB[iofc]
- W parameter weight matrix for backward input, output, forget, and cell gates"
""
"RB[iofc]
- R recurrence weight matrix for backward input, output, forget, and cell gates"
""
"WBb[iofc]
- W bias vectors for backward input, output, forget, and cell gates"
""
"RBb[iofc]
- R bias vectors for backward input, output, forget, and cell gates"
""
"PB[iof]
- P peephole weight vector for backward input, output, and forget gates"
""
"H
- Hidden state"
""
"num_directions
- 2 if direction == bidirectional else 1"
""
"Activation functions:"
""
" Relu(x) - max(0, x)"
""
" Tanh(x) - (1 - e^{-2x})/(1 + e^{-2x})"
""
" Sigmoid(x) - 1/(1 + e^{-x})"
""
" (NOTE: Below are optional)"
""
" Affine(x) - alphax + beta"
""
" LeakyRelu(x) - x if x >= 0 else alpha * x"
""
" ThresholdedRelu(x) - x if x >= alpha else 0"
""
" ScaledTanh(x) - alphaTanh(betax)"
""
" HardSigmoid(x) - min(max(alphax + beta, 0), 1)"
""
" Elu(x) - x if x >= 0 else alpha*(e^x - 1)"
""
" Softsign(x) - x/(1 + |x|)"
""
" Softplus(x) - log(1 + e^x)"
""
"Equations (Default: f=Sigmoid, g=Tanh, h=Tanh):"
""
" - it = f(Xt*(Wi^T) + Ht-1*(Ri^T) + Pi (.) Ct-1 + Wbi + Rbi)"
""
" - ft = f(Xt*(Wf^T) + Ht-1*(Rf^T) + Pf (.) Ct-1 + Wbf + Rbf)"
""
" - ct = g(Xt*(Wc^T) + Ht-1*(Rc^T) + Wbc + Rbc)"
""
" - Ct = ft (.) Ct-1 + it (.) ct"
""
" - ot = f(Xt*(Wo^T) + Ht-1*(Ro^T) + Po (.) Ct + Wbo + Rbo)"
""
" - Ht = ot (.) h(Ct)"
"This operator has optional inputs/outputs. See the doc for more details about the representation of optional arguments. An empty string may be used in the place of an actual argument's name to indicate a missing argument. Trailing optional arguments (those not followed by an argument that is present) may also be simply omitted."
Operands:
X
: memref of any type values or tensor of any type valuesW
: memref of any type values or tensor of any type valuesR
: memref of any type values or tensor of any type valuesB
: memref of any type values or tensor of any type valuessequence_lens
: memref of any type values or tensor of any type valuesinitial_h
: memref of any type values or tensor of any type valuesinitial_c
: memref of any type values or tensor of any type valuesP
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
activation_alpha |
ArrayAttr |
32-bit float array attribute attribute |
activation_beta |
ArrayAttr |
32-bit float array attribute attribute |
activations |
ArrayAttr |
string array attribute attribute |
clip |
FloatAttr |
32-bit float attribute attribute |
direction |
StringAttr |
string attribute attribute |
hidden_size |
IntegerAttr |
64-bit integer attribute attribute |
input_forget |
IntegerAttr |
64-bit integer attribute attribute |
Results:
Y
: memref of any type values or tensor of any type valuesY_h
: memref of any type values or tensor of any type valuesY_c
: memref of any type values or tensor of any type values
onnx.LeakyRelu (ONNXLeakyReluOp)
ONNX LeakyRelu operation
Description:
"LeakyRelu takes input data (Tensor) and an argument alpha, and produces one"
"output data (Tensor) where the function f(x) = alpha * x for x < 0
,"
"f(x) = x for x >= 0
, is applied to the data tensor elementwise."
Operands:
X
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
alpha |
FloatAttr |
32-bit float attribute attribute |
Results:
Y
: memref of any type values or tensor of any type values
onnx.Less (ONNXLessOp)
ONNX Less operation
Description:
"Returns the tensor resulted from performing the less
logical operation"
"elementwise on the input tensors A
and B
(with Numpy-style broadcasting support)."
""
"This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check the doc."
Operands:
A
: memref of any type values or tensor of any type valuesB
: memref of any type values or tensor of any type values
Attributes:
Results:
C
: memref of any type values or tensor of any type values
onnx.Log (ONNXLogOp)
ONNX Log operation
Description:
"Calculates the natural log of the given input tensor, element-wise."
Operands:
input
: memref of any type values or tensor of any type values
Attributes:
Results:
output
: memref of any type values or tensor of any type values
onnx.LogSoftmax (ONNXLogSoftmaxOp)
ONNX LogSoftmax operation
Description:
"The operator computes the logsoftmax (log of softmax) values for each layer in the batch" " of the given input." "" "The input does not need to explicitly be a 2D vector; rather, it will be" "coerced into one. For an arbitrary n-dimensional tensor" "input \in [a_0, a_1, ..., a_{k-1}, a_k, ..., a_{n-1}] and k is" "the axis provided, then input will be coerced into a 2-dimensional tensor with" "dimensions [a_0 * ... * a_{k-1}, a_k * ... * a_{n-1}]. For the default" "case where axis=1, this means the input tensor will be coerced into a 2D tensor" "of dimensions [a_0, a_1 * ... * a_{n-1}], where a_0 is often the batch size." "In this situation, we must have a_0 = N and a_1 * ... * a_{n-1} = D." "Each of these dimensions must be matched correctly, or else the operator" "will throw errors. The output tensor has the same shape" "and contains the logsoftmax values of the corresponding input."
Operands:
input
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
axis |
IntegerAttr |
64-bit integer attribute attribute |
Results:
output
: memref of any type values or tensor of any type values
onnx.Loop (ONNXLoopOp)
ONNX Loop operation
Description:
"Generic Looping construct. This loop has multiple termination conditions:" "" "1) Trip count. Iteration count specified at runtime. Set by" " specifying the input M. Optional. Set to empty string to omit." " Note that a static trip count (specified at graph construction time) can be" " specified by passing in a constant node for input M." "2) Loop termination condition. This is an input to the op that determines" " whether to run the first iteration and also a loop-carried dependency for" " the body graph. The body graph must yield a value for the condition variable," " whether this input is provided or not." "" "This table summarizes the operating modes of this operator with equivalent" "C-style code:" "" " Operator inputs defined as (max_trip_count, condition_var)." "" " input ("", ""):" " for (int i=0; ; ++i) {" " cond = ... // Note this value is ignored, but is required in the body" " }" "" " input ("", cond) // Note this is analogous to a while loop" " bool cond = ...;" " for (int i=0; cond; ++i) {" " cond = ...;" " }" "" " input ("", 1) // Note this is analogous to a do-while loop" " bool cond = true" " for (int i=0; cond; ++i) {" " cond = ...;" " }" "" " input (trip_count, "") // Note this is analogous to a for loop" " int trip_count = ..." " for (int i=0; i < trip_count; ++i) {" " cond = ...; // ignored" " }" "" " input (trip_count, cond)" " int trip_count = ...;" " bool cond = ...;" " for (int i=0; i < trip_count && cond; ++i) {" " cond = ...;" " }" "" "" "Sample usage - cond as well as trip count" "" " graph predict-net {" " %a = Constantvalue = <Scalar Tensor [3]>" " %b = Constantvalue = <Scalar Tensor [6]>" " %keepgoing = Constantvalue = <Scalar Tensor [1]>" " %max_trip_count = Constantvalue = <Scalar Tensor [10]>" " %keepgoing_out, %b_out, %user_defined_vals = Loop[body = ](%max_trip_count, %keepgoing, %b)" " return" " }" "" " graph body-net (" " %i[INT32, scalar] // iteration number" " %keepgoing_in[BOOL, scalar] // incoming loop-termination-condition; not used" " %b_in[INT32, scalar] // incoming value of loop-carried-dependency b" " ) {" " %my_local = Add(%a, %b_in)" " %b_out = Sub(%a, %b_in) // outgoing value of loop-carried-dependency b" " %keepgoing_out = Greater(%my_local, %b_out) // outgoing loop-termination-condition" " %user_defined_val = Add(%b_in, %b_in) // scan-output value to be accumulated" " return %keepgoing_out, %b_out, %user_defined_val" " }" "" "Sample equivalent C code" "" " {" " /* User-defined code (enclosing scope) /" " int a = 3, b = 6;" " bool keepgoing = true; // Analogous to input cond" " / End user-defined code /" "" " / Implicitly-defined code /" " const int max_trip_count = 10; // Analogous to input M" " int user_defined_vals[]; // Imagine this is resizable" " / End implicitly-defined code /" " / initialize loop-carried variables and scan-output variables /" " bool keepgoing_out = keepgoing" " int b_out = b" "" " for (int i=0; i < max_trip_count && keepgoing_out; ++i) {" " / Implicitly-defined code: bind actual parameter values" " to formal parameter variables of loop-body /" " bool keepgoing_in = keepgoing_out; " " bool b_in = b_out;" "" " / User-defined code (loop body) /" " int my_local = a + b_in; // Reading value "a" from the enclosing scope is fine" " b_out = a - b_in;" " keepgoing_out = my_local > b_out; " " user_defined_val = b_in + b_in; // b_in and b_out are different variables" " / End user-defined code /" "" " / Implicitly defined-code */" " user_defined_vals[i] = user_defined_val // accumulate scan-output values" " }" " // int t = my_local; // Can't do this. my_local is not accessible here." "" " // The values below are bound to the output variables of the loop and therefore accessible" " // b_out; user_defined_vals; keepgoing_out;" " }" "" "There are several things of note in this code snippet:" "" "1) Values from the enclosing scope (i.e. variable "a" here) are in scope and can" " be referenced in the inputs of the loop." "2) Any values computed in the loop body that needs to be used in a subsequent" " iteration or after the loop are modelled using a pair of variables in the loop-body," " consisting of an input variable (eg., b_in) and an output variable (eg., b_out)." " These are referred to as loop-carried dependences. The loop operation node" " supplies the input value of the input variable for the first iteration, and" " returns the output value of the output variable produced by the final" " iteration." "3) Scan_output variables are used to implicitly concatenate values computed across" " all the iterations. In the above example, the value of user_defined_val computed" " over all iterations are concatenated and returned as the value of user_defined_vals" " after the loop." "4) Values created in the body cannot be accessed in the enclosing scope," " except using the mechanism described above." "" "Note that the semantics of this op support "diagonal" or "wavefront" execution." "(See Step 3 here for an example:" "https://devblogs.nvidia.com/optimizing-recurrent-neural-networks-cudnn-5/)." "Frontends should emit multi-layer RNNs as a series of While operators (with" "time being the inner looping dimension), with each successive layer consuming" "the scan_outputs from the previous layer, possibly going through several" "point-wise operators (e.g. dropout, residual connections, linear layer)."
Operands:
M
: memref of any type values or tensor of any type valuescond
: memref of any type values or tensor of any type valuesv_initial
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
body |
Attribute |
any attribute attribute |
Results:
v_final_and_scan_outputs
: memref of any type values or tensor of any type values
onnx.LpNormalization (ONNXLpNormalizationOp)
ONNX LpNormalization operation
Description:
"Given a matrix, apply Lp-normalization along the provided axis."
Operands:
input
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
axis |
IntegerAttr |
64-bit integer attribute attribute |
p |
IntegerAttr |
64-bit integer attribute attribute |
Results:
output
: memref of any type values or tensor of any type values
onnx.LpPool (ONNXLpPoolOp)
ONNX LpPool operation
Description:
"LpPool consumes an input tensor X and applies Lp pooling across" " the tensor according to kernel sizes, stride sizes, and pad lengths." " Lp pooling consisting of computing the Lp norm on all values of a subset" " of the input tensor according to the kernel size and downsampling the" " data into the output tensor Y for further processing."
Operands:
X
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
auto_pad |
StringAttr |
string attribute attribute |
kernel_shape |
ArrayAttr |
64-bit integer array attribute attribute |
p |
IntegerAttr |
64-bit integer attribute attribute |
pads |
ArrayAttr |
64-bit integer array attribute attribute |
strides |
ArrayAttr |
64-bit integer array attribute attribute |
Results:
Y
: memref of any type values or tensor of any type values
onnx.MatMulInteger (ONNXMatMulIntegerOp)
ONNX MatMulInteger operation
Description:
"Matrix product that behaves like numpy.matmul: https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.matmul.html." "The production MUST never overflow. The accumulation may overflow if and only if in 32 bits."
Operands:
A
: memref of any type values or tensor of any type valuesB
: memref of any type values or tensor of any type valuesa_zero_point
: memref of any type values or tensor of any type valuesb_zero_point
: memref of any type values or tensor of any type values
Attributes:
Results:
Y
: memref of any type values or tensor of any type values
onnx.MatMul (ONNXMatMulOp)
ONNX MatMul operation
Description:
"Matrix product that behaves like numpy.matmul: https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.matmul.html"
Operands:
A
: memref of any type values or tensor of any type valuesB
: memref of any type values or tensor of any type values
Attributes:
Results:
Y
: memref of any type values or tensor of any type values
onnx.Max (ONNXMaxOp)
ONNX Max operation
Description:
"Element-wise max of each of the input tensors (with Numpy-style broadcasting support)." "All inputs and outputs must have the same data type." "This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check the doc."
Operands:
data_0
: memref of any type values or tensor of any type values
Attributes:
Results:
max
: memref of any type values or tensor of any type values
onnx.MaxPool (ONNXMaxPoolOp)
ONNX MaxPool operation
Description:
"MaxPool consumes an input tensor X and applies max pooling across"
" the tensor according to kernel sizes, stride sizes, and pad lengths."
" max pooling consisting of computing the max on all values of a"
" subset of the input tensor according to the kernel size and downsampling the"
" data into the output tensor Y for further processing. The output spatial shape will be following:"
" " " output_spatial_shape[i] = floor((input_spatial_shape[i] + pad_shape[i] - ((kernel_spatial_shape[i] - 1) * dilations[i] + 1)) / strides_spatial_shape[i] + 1)" "
"
" or"
" " " output_spatial_shape[i] = ceil((input_spatial_shape[i] + pad_shape[i] - ((kernel_spatial_shape[i] - 1) * dilations[i] + 1)) / strides_spatial_shape[i] + 1)" "
"
" if ceil_mode is enabled"
""
" " " * pad_shape[i] is sum of pads along axis i" "
"
""
" auto_pad
is a DEPRECATED attribute. If you are using them currently, the output spatial shape will be following:"
" " " VALID: output_spatial_shape[i] = ceil((input_spatial_shape[i] - ((kernel_spatial_shape[i] - 1) * dilations[i] + 1) + 1) / strides_spatial_shape[i])" " SAME_UPPER or SAME_LOWER: output_spatial_shape[i] = ceil(input_spatial_shape[i] / strides_spatial_shape[i])" "
"
" And pad shape will be following if SAME_UPPER
or SAME_LOWER
:"
" " " pad_shape[i] = (output_spatial_shape[i] - 1) * strides_spatial_shape[i] + ((kernel_spatial_shape[i] - 1) * dilations[i] + 1) - input_spatial_shape[i]" "
"
" The output of each pooling window is maximum number of elements exclude pad. "
" "
Operands:
X
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
auto_pad |
StringAttr |
string attribute attribute |
ceil_mode |
IntegerAttr |
64-bit integer attribute attribute |
dilations |
ArrayAttr |
64-bit integer array attribute attribute |
kernel_shape |
ArrayAttr |
64-bit integer array attribute attribute |
pads |
ArrayAttr |
64-bit integer array attribute attribute |
storage_order |
IntegerAttr |
64-bit integer attribute attribute |
strides |
ArrayAttr |
64-bit integer array attribute attribute |
Results:
Y
: memref of any type values or tensor of any type valuesIndices
: memref of any type values or tensor of any type values
onnx.MaxPoolSingleOut (ONNXMaxPoolSingleOutOp)
ONNX MaxPool operation with a single output.
Description:
"ONNX MaxPool operation with a single output." "See ONNXMaxPoolOp for a full description of the MaxPool semantics."
Operands:
X
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
auto_pad |
StringAttr |
string attribute attribute |
ceil_mode |
IntegerAttr |
64-bit integer attribute attribute |
dilations |
ArrayAttr |
64-bit integer array attribute attribute |
kernel_shape |
ArrayAttr |
64-bit integer array attribute attribute |
pads |
ArrayAttr |
64-bit integer array attribute attribute |
storage_order |
IntegerAttr |
64-bit integer attribute attribute |
strides |
ArrayAttr |
64-bit integer array attribute attribute |
Results:
o_Y
: memref of any type values or tensor of any type values
onnx.MaxRoiPool (ONNXMaxRoiPoolOp)
ONNX MaxRoiPool operation
Description:
"ROI max pool consumes an input tensor X and region of interests (RoIs) to" " apply max pooling across each RoI, to produce output 4-D tensor of shape" " (num_rois, channels, pooled_shape[0], pooled_shape[1])."
Operands:
X
: memref of any type values or tensor of any type valuesrois
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
pooled_shape |
ArrayAttr |
64-bit integer array attribute attribute |
spatial_scale |
FloatAttr |
32-bit float attribute attribute |
Results:
Y
: memref of any type values or tensor of any type values
onnx.MaxUnpool (ONNXMaxUnpoolOp)
ONNX MaxUnpool operation
Description:
"MaxUnpool essentially computes the partial inverse of the MaxPool op." " The input information to this op is typically the the output information from a MaxPool op. The first" " input tensor X is the tensor that needs to be unpooled, which is typically the pooled tensor (first output)" " from MaxPool. The second input tensor, I, contains the indices to the (locally maximal) elements corrsponding" " to the elements in the first input tensor X. Input tensor I is typically the second output of the MaxPool op." " The third (optional) input is a tensor that specifies the output size of the unpooling operation." "" "MaxUnpool is intended to do 'partial' inverse of the MaxPool op. 'Partial' because all the non-maximal" " values from the original input to MaxPool are set to zero in the output of the MaxUnpool op. Pooling" " the result of an unpooling operation should give back the original input to the unpooling op." "" "MaxUnpool can produce the same output size for several input sizes, which makes unpooling op ambiguous." " The third input argument, output_size, is meant to disambiguate the op and produce output tensor of" " known/predictable size." "" "In addition to the inputs, MaxUnpool takes three attributes, namely kernel_shape, strides, and pads," " which define the exact unpooling op. The attributes typically have the same values as the corrsponding" " pooling op that the unpooling op is trying to invert."
Operands:
X
: memref of any type values or tensor of any type valuesI
: memref of any type values or tensor of any type valuesoutput_shape
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
kernel_shape |
ArrayAttr |
64-bit integer array attribute attribute |
pads |
ArrayAttr |
64-bit integer array attribute attribute |
strides |
ArrayAttr |
64-bit integer array attribute attribute |
Results:
output
: memref of any type values or tensor of any type values
onnx.Mean (ONNXMeanOp)
ONNX Mean operation
Description:
"Element-wise mean of each of the input tensors (with Numpy-style broadcasting support)." "All inputs and outputs must have the same data type." "This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check the doc."
Operands:
data_0
: memref of any type values or tensor of any type values
Attributes:
Results:
mean
: memref of any type values or tensor of any type values
onnx.MeanVarianceNormalization (ONNXMeanVarianceNormalizationOp)
ONNX MeanVarianceNormalization operation
Description:
"A MeanVarianceNormalization Function: Perform mean variance normalization"
" on the input tensor X using formula:
(X-EX)/sqrt(E(X-EX)^2)
"
Operands:
X
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
axes |
ArrayAttr |
64-bit integer array attribute attribute |
Results:
Y
: memref of any type values or tensor of any type values
onnx.Min (ONNXMinOp)
ONNX Min operation
Description:
"Element-wise min of each of the input tensors (with Numpy-style broadcasting support)." "All inputs and outputs must have the same data type." "This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check the doc."
Operands:
data_0
: memref of any type values or tensor of any type values
Attributes:
Results:
min
: memref of any type values or tensor of any type values
onnx.Mod (ONNXModOp)
ONNX Mod operation
Description:
"Performs element-wise binary modulus (with Numpy-style broadcasting support). "
" The sign of the remainder is the same as that of the Divisor."
" "
" Mod operator can also behave like C fmod() or numpy.fmod. In this case, the sign of the remainder however, will be the same as the Dividend "
" (in contrast to integer mod). To force a behavior like numpy.fmod() an 'fmod' Attribute is provided."
" This attribute is set to 0 by default causing the behavior to be like integer mod. "
" Setting this attribute to 1 causes the remainder to be calculated similar to that of numpy.fmod()."
""
" If the input type is floating point, then fmod
attribute must be set to 1."
" "
" In case of dividend being zero, the results will be platform dependent."
""
" This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check the doc."
Operands:
A
: memref of any type values or tensor of any type valuesB
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
fmod |
IntegerAttr |
64-bit integer attribute attribute |
Results:
C
: memref of any type values or tensor of any type values
onnx.Mul (ONNXMulOp)
ONNX Mul operation
Description:
"Performs element-wise binary multiplication (with Numpy-style broadcasting support)." "" "This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check the doc."
Operands:
A
: memref of any type values or tensor of any type valuesB
: memref of any type values or tensor of any type values
Attributes:
Results:
C
: memref of any type values or tensor of any type values
onnx.Multinomial (ONNXMultinomialOp)
ONNX Multinomial operation
Description:
"Generate a tensor of samples from a multinomial distribution according to the probabilities" "of each of the possible outcomes."
Operands:
input
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
dtype |
IntegerAttr |
64-bit integer attribute attribute |
sample_size |
IntegerAttr |
64-bit integer attribute attribute |
seed |
FloatAttr |
32-bit float attribute attribute |
Results:
output
: memref of any type values or tensor of any type values
onnx.Neg (ONNXNegOp)
ONNX Neg operation
Description:
"Neg takes one input data (Tensor) and produces one output data" "(Tensor) where each element flipped sign, y = -x, is applied to" "the tensor elementwise."
Operands:
X
: memref of any type values or tensor of any type values
Attributes:
Results:
Y
: memref of any type values or tensor of any type values
onnx.NonMaxSuppression (ONNXNonMaxSuppressionOp)
ONNX NonMaxSuppression operation
Description:
"Filter out boxes that have high intersection-over-union (IOU) overlap with previously selected boxes." "Bounding boxes with score less than score_threshold are removed. Bounding box format is indicated by attribute center_point_box." "Note that this algorithm is agnostic to where the origin is in the coordinate system and more generally is invariant to" "orthogonal transformations and translations of the coordinate system; thus translating or reflections of the coordinate system" "result in the same boxes being selected by the algorithm." "The selected_indices output is a set of integers indexing into the input collection of bounding boxes representing the selected boxes." "The bounding box coordinates corresponding to the selected indices can then be obtained using the Gather or GatherND operation."
Operands:
boxes
: memref of any type values or tensor of any type valuesscores
: memref of any type values or tensor of any type valuesmax_output_boxes_per_class
: memref of any type values or tensor of any type valuesiou_threshold
: memref of any type values or tensor of any type valuesscore_threshold
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
center_point_box |
IntegerAttr |
64-bit integer attribute attribute |
Results:
selected_indices
: memref of any type values or tensor of any type values
onnx.NonZero (ONNXNonZeroOp)
ONNX NonZero operation
Description:
"Returns the indices of the elements that are non-zero" " (in row-major order - by dimension)." " NonZero behaves similar to numpy.nonzero:" " https://docs.scipy.org/doc/numpy/reference/generated/numpy.nonzero.html"
Operands:
X
: memref of any type values or tensor of any type values
Attributes:
Results:
Y
: memref of any type values or tensor of any type values
onnx.Not (ONNXNotOp)
ONNX Not operation
Description:
"Returns the negation of the input tensor element-wise."
Operands:
X
: memref of any type values or tensor of any type values
Attributes:
Results:
Y
: memref of any type values or tensor of any type values
onnx.OneHot (ONNXOneHotOp)
ONNX OneHot operation
Description:
"Produces a one-hot tensor based on inputs." " The locations represented by the index values in the 'indices' input tensor will have 'on_value'" " and the other locations will have 'off_value' in the output tensor, where 'on_value' and 'off_value'" " are specified as part of required input argument 'values', which is a two-element tensor of format" " [off_value, on_value]. The rank of the output tensor will be one greater than the rank of the" " input tensor. The additional dimension is for one-hot representation. The additional dimension will" " be inserted at the position specified by 'axis'. If 'axis' is not specified then then additional" " dimension will be inserted as the innermost dimension, i.e. axis=-1. The size of the additional" " dimension is specified by required scalar input 'depth'. The type of the output tensor is the same" " as the type of the 'values' input. Any entries in the 'indices' input tensor with values outside" " the range [-depth, depth-1] will result in one-hot representation with all 'off_value' values in the" " output tensor." "" " when axis = 0:" " output[input[i, j, k], i, j, k] = 1 for all i, j, k and 0 otherwise." "" " when axis = -1:" " output[i, j, k, input[i, j, k]] = 1 for all i, j, k and 0 otherwise." ""
Operands:
indices
: memref of any type values or tensor of any type valuesdepth
: memref of any type values or tensor of any type valuesvalues
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
axis |
IntegerAttr |
64-bit integer attribute attribute |
Results:
output
: memref of any type values or tensor of any type values
onnx.Or (ONNXOrOp)
ONNX Or operation
Description:
"Returns the tensor resulted from performing the or
logical operation"
"elementwise on the input tensors A
and B
(with Numpy-style broadcasting support)."
""
"This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check the doc."
Operands:
A
: memref of any type values or tensor of any type valuesB
: memref of any type values or tensor of any type values
Attributes:
Results:
C
: memref of any type values or tensor of any type values
onnx.PRelu (ONNXPReluOp)
ONNX PRelu operation
Description:
"PRelu takes input data (Tensor) and slope tensor as input, and produces one"
"output data (Tensor) where the function f(x) = slope * x for x < 0
,"
"f(x) = x for x >= 0
., is applied to the data tensor elementwise."
"This operator supports unidirectional broadcasting (tensor slope should be unidirectional broadcastable to input tensor X); for more details please check the doc."
Operands:
X
: memref of any type values or tensor of any type valuesslope
: memref of any type values or tensor of any type values
Attributes:
Results:
Y
: memref of any type values or tensor of any type values
onnx.PadConstantValue (ONNXPadConstantValueOp)
ONNX Pad operation with constant padding value
Description:
"this operation is introduced to handle situation" " in which the padding value is a constant. " The value will become an attribute." "This operation is also used to handle the optional value input is missing and the default value 0." "is used."
Operands:
data
: memref of any type values or tensor of any type valuespads
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
constant_value |
FloatAttr |
32-bit float attribute attribute |
mode |
StringAttr |
string attribute attribute |
Results:
output
: memref of any type values or tensor of any type values
onnx.PadConstatValuePad (ONNXPadConstantValuePadOp)
ONNX Pad operation with constant padding value
Description:
"this operation is introduced to handle situation" " in which the padding value and padding are constants" "They will become attributes."
Operands:
data
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
pads |
ArrayAttr |
64-bit integer array attribute attribute |
constant_value |
FloatAttr |
32-bit float attribute attribute |
mode |
StringAttr |
string attribute attribute |
Results:
output
: memref of any type values or tensor of any type values
onnx.Pad (ONNXPadOp)
ONNX Pad operation
Description:
"Given a tensor containing the data to be padded (data
), a tensor containing the number of start and end pad values for axis (pads
), (optionally) a mode
, and (optionally) constant_value
, "
"a padded tensor (output
) is generated."
""
"The three supported modes
are (similar to corresponding modes supported by numpy.pad
):"
""
"1) constant
(default) - pads with a given constant value as specified by constant_value
(which defaults to 0)"
""
"2) reflect
- pads with the reflection of the vector mirrored on the first and last values of the vector along each axis"
""
"3) edge
- pads with the edge values of array"
""
""
"Example 1 (constant
mode):"
" Insert 0 pads to the beginning of the second dimension."
""
" data = "
" ["
" [1.0, 1.2],"
" [2.3, 3.4],"
" [4.5, 5.7],"
" ] "
""
" pads = [0, 2, 0, 0]"
""
" mode = 'constant'"
""
" constant_value = 0.0"
""
" output = "
" ["
" ["
" [0.0, 0.0, 1.0, 1.2],"
" [0.0, 0.0, 2.3, 3.4],"
" [0.0, 0.0, 4.5, 5.7],"
" ],"
" ]"
""
""
"Example 2 (reflect
mode):"
" data = "
" ["
" [1.0, 1.2],"
" [2.3, 3.4],"
" [4.5, 5.7],"
" ] "
""
" pads = [0, 2, 0, 0]"
""
" mode = 'reflect'"
""
" output = "
" ["
" ["
" [1.0, 1.2, 1.0, 1.2],"
" [2.3, 3.4, 2.3, 3.4],"
" [4.5, 5.7, 4.5, 5.7],"
" ],"
" ]"
""
""
"Example 3 (edge
mode):"
" data = "
" ["
" [1.0, 1.2],"
" [2.3, 3.4],"
" [4.5, 5.7],"
" ] "
""
" pads = [0, 2, 0, 0]"
""
" mode = 'edge'"
""
" output = "
" ["
" ["
" [1.0, 1.0, 1.0, 1.2],"
" [2.3, 2.3, 2.3, 3.4],"
" [4.5, 4.5, 4.5, 5.7],"
" ],"
" ]"
""
Operands:
data
: memref of any type values or tensor of any type valuespads
: memref of any type values or tensor of any type valuesconstant_value
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
mode |
StringAttr |
string attribute attribute |
Results:
output
: memref of any type values or tensor of any type values
onnx.Pow (ONNXPowOp)
ONNX Pow operation
Description:
"Pow takes input data (Tensor) and exponent Tensor, and"
"produces one output data (Tensor) where the function f(x) = x^exponent
,"
"is applied to the data tensor elementwise."
"This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check the doc."
Operands:
X
: memref of any type values or tensor of any type valuesY
: memref of any type values or tensor of any type values
Attributes:
Results:
Z
: memref of any type values or tensor of any type values
onnx.QLinearConv (ONNXQLinearConvOp)
ONNX QLinearConv operation
Description:
"The convolution operator consumes a quantized input tensor, its scale and zero point," "a quantized filter, its scale and zero point, and output's scale and zero point," "and computes the quantized output. Each scale and zero-point pair must have same shape." "It means they must be either scalars (per tensor) or 1-D tensors (per output channel)." "Each input or output and its related zero point must have same type."
Operands:
x
: memref of any type values or tensor of any type valuesx_scale
: memref of any type values or tensor of any type valuesx_zero_point
: memref of any type values or tensor of any type valuesw
: memref of any type values or tensor of any type valuesw_scale
: memref of any type values or tensor of any type valuesw_zero_point
: memref of any type values or tensor of any type valuesy_scale
: memref of any type values or tensor of any type valuesy_zero_point
: memref of any type values or tensor of any type valuesB
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
auto_pad |
StringAttr |
string attribute attribute |
dilations |
ArrayAttr |
64-bit integer array attribute attribute |
group |
IntegerAttr |
64-bit integer attribute attribute |
kernel_shape |
ArrayAttr |
64-bit integer array attribute attribute |
pads |
ArrayAttr |
64-bit integer array attribute attribute |
strides |
ArrayAttr |
64-bit integer array attribute attribute |
Results:
y
: memref of any type values or tensor of any type values
onnx.QLinearMatMul (ONNXQLinearMatMulOp)
ONNX QLinearMatMul operation
Description:
"Matrix product that behaves like numpy.matmul: https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.matmul.html." "It consumes two quantized input tensors, their scales and zero points, scale and zero point of output, and computes the quantized output." "The quantization formula is y = saturate((x / y_scale) + y_zero_point). For (x / y_scale), it is rounding to nearest ties to even." "Refer to https://en.wikipedia.org/wiki/Rounding for details. Scale and zero point must have same shape." "They must be either scalar (per tensor) or 1-D tensor (per row for 'a' and per column for 'b'). If scale and zero point are 1-D tensor," "the number of elements of scale and zero point tensor of input 'a' and output 'y' should be equal to the number of rows of input 'a'," "and the number of elements of scale and zero point tensor of input 'b' should be equal to the number of columns of input 'b'." "Production must never overflow, and accumulation may overflow if and only if in 32 bits."
Operands:
a
: memref of any type values or tensor of any type valuesa_scale
: memref of any type values or tensor of any type valuesa_zero_point
: memref of any type values or tensor of any type valuesb
: memref of any type values or tensor of any type valuesb_scale
: memref of any type values or tensor of any type valuesb_zero_point
: memref of any type values or tensor of any type valuesy_scale
: memref of any type values or tensor of any type valuesy_zero_point
: memref of any type values or tensor of any type values
Attributes:
Results:
y
: memref of any type values or tensor of any type values
onnx.QuantizeLinear (ONNXQuantizeLinearOp)
ONNX QuantizeLinear operation
Description:
"The linear per-tensor/layer quantization operator. It consumes a high precision tensor, a scale, a zero point to compute the low precision / quantized tensor." "The quantization formula is y = saturate ((x / y_scale) + y_zero_point). For saturation, it saturates to [0, 255] if it's uint8, or [-128, 127] if it's int8." "For (x / y_scale), it's rounding to nearest ties to even. Refer to https://en.wikipedia.org/wiki/Rounding for details. 'y_zero_point' and 'y' must have same type."
Operands:
x
: memref of any type values or tensor of any type valuesy_scale
: memref of any type values or tensor of any type valuesy_zero_point
: memref of any type values or tensor of any type values
Attributes:
Results:
y
: memref of any type values or tensor of any type values
onnx.RNN (ONNXRNNOp)
ONNX RNN operation
Description:
"Computes an one-layer simple RNN. This operator is usually supported"
"via some custom implementation such as CuDNN."
""
"Notations:"
""
"X
- input tensor"
""
"i
- input gate"
""
"t
- time step (t-1 means previous time step)"
""
"Wi
- W parameter weight matrix for input gate"
""
"Ri
- R recurrence weight matrix for input gate"
""
"Wbi
- W parameter bias vector for input gate"
""
"Rbi
- R parameter bias vector for input gate"
""
"WBi
- W parameter weight matrix for backward input gate"
""
"RBi
- R recurrence weight matrix for backward input gate"
""
"WBbi
- WR bias vectors for backward input gate"
""
"RBbi
- RR bias vectors for backward input gate"
""
"H
- Hidden state"
""
"num_directions
- 2 if direction == bidirectional else 1"
""
"Activation functions:"
""
" Relu(x) - max(0, x)"
""
" Tanh(x) - (1 - e^{-2x})/(1 + e^{-2x})"
""
" Sigmoid(x) - 1/(1 + e^{-x})"
""
" (NOTE: Below are optional)"
""
" Affine(x) - alphax + beta"
""
" LeakyRelu(x) - x if x >= 0 else alpha * x"
""
" ThresholdedRelu(x) - x if x >= alpha else 0"
""
" ScaledTanh(x) - alphaTanh(betax)"
""
" HardSigmoid(x) - min(max(alphax + beta, 0), 1)"
""
" Elu(x) - x if x >= 0 else alpha*(e^x - 1)"
""
" Softsign(x) - x/(1 + |x|)"
""
" Softplus(x) - log(1 + e^x)"
""
"Equations (Default: f=Tanh):"
""
" - Ht = f(Xt*(Wi^T) + Ht-1*(Ri^T) + Wbi + Rbi)"
"This operator has optional inputs/outputs. See the doc for more details about the representation of optional arguments. An empty string may be used in the place of an actual argument's name to indicate a missing argument. Trailing optional arguments (those not followed by an argument that is present) may also be simply omitted."
Operands:
X
: memref of any type values or tensor of any type valuesW
: memref of any type values or tensor of any type valuesR
: memref of any type values or tensor of any type valuesB
: memref of any type values or tensor of any type valuessequence_lens
: memref of any type values or tensor of any type valuesinitial_h
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
activation_alpha |
ArrayAttr |
32-bit float array attribute attribute |
activation_beta |
ArrayAttr |
32-bit float array attribute attribute |
activations |
ArrayAttr |
string array attribute attribute |
clip |
FloatAttr |
32-bit float attribute attribute |
direction |
StringAttr |
string attribute attribute |
hidden_size |
IntegerAttr |
64-bit integer attribute attribute |
Results:
Y
: memref of any type values or tensor of any type valuesY_h
: memref of any type values or tensor of any type values
onnx.RandomNormalLike (ONNXRandomNormalLikeOp)
ONNX RandomNormalLike operation
Description:
"Generate a tensor with random values drawn from a normal distribution."
"The shape of the output tensor is copied from the shape of the input tensor,"
"and the parameters of the normal distribution are specified by mean
and scale
."
""
"The data type is specified by the 'dtype' argument, or copied from the input tensor if not provided."
"The 'dtype' argument must be one of the data types specified in the 'DataType' enum field in the"
"TensorProto message, and be valid as an output type."
Operands:
input
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
dtype |
IntegerAttr |
64-bit integer attribute attribute |
mean |
FloatAttr |
32-bit float attribute attribute |
scale |
FloatAttr |
32-bit float attribute attribute |
seed |
FloatAttr |
32-bit float attribute attribute |
Results:
output
: memref of any type values or tensor of any type values
onnx.RandomNormal (ONNXRandomNormalOp)
ONNX RandomNormal operation
Description:
"Generate a tensor with random values drawn from a normal distribution. The shape"
"of the tensor is specified by the shape
argument and the parameter of the normal distribution"
"specified by mean
and scale
."
""
"The data type is specified by the 'dtype' argument. The 'dtype' argument must"
"be one of the data types specified in the 'DataType' enum field in the"
"TensorProto message."
Operands:
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
dtype |
IntegerAttr |
64-bit integer attribute attribute |
mean |
FloatAttr |
32-bit float attribute attribute |
scale |
FloatAttr |
32-bit float attribute attribute |
seed |
FloatAttr |
32-bit float attribute attribute |
shape |
ArrayAttr |
64-bit integer array attribute attribute |
Results:
output
: memref of any type values or tensor of any type values
onnx.RandomUniformLike (ONNXRandomUniformLikeOp)
ONNX RandomUniformLike operation
Description:
"Generate a tensor with random values drawn from a uniform distribution."
"The shape of the output tensor is copied from the shape of the input tensor,"
"and the parameters of the uniform distribution are specified by low
and high
."
""
"The data type is specified by the 'dtype' argument, or copied from the input tensor if not provided."
"The 'dtype' argument must be one of the data types specified in the 'DataType' enum field in the"
"TensorProto message and be valid as an output type."
Operands:
input
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
dtype |
IntegerAttr |
64-bit integer attribute attribute |
high |
FloatAttr |
32-bit float attribute attribute |
low |
FloatAttr |
32-bit float attribute attribute |
seed |
FloatAttr |
32-bit float attribute attribute |
Results:
output
: memref of any type values or tensor of any type values
onnx.RandomUniform (ONNXRandomUniformOp)
ONNX RandomUniform operation
Description:
"Generate a tensor with random values drawn from a uniform distribution. The shape"
"of the tensor is specified by the shape
argument and the range by low
and high
."
""
"The data type is specified by the 'dtype' argument. The 'dtype' argument must"
"be one of the data types specified in the 'DataType' enum field in the"
"TensorProto message."
Operands:
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
dtype |
IntegerAttr |
64-bit integer attribute attribute |
high |
FloatAttr |
32-bit float attribute attribute |
low |
FloatAttr |
32-bit float attribute attribute |
seed |
FloatAttr |
32-bit float attribute attribute |
shape |
ArrayAttr |
64-bit integer array attribute attribute |
Results:
output
: memref of any type values or tensor of any type values
onnx.Range (ONNXRangeOp)
ONNX Range operation
Description:
"Generate a tensor containing a sequence of numbers that begin at start
and extends by increments of delta
"
"up to limit
(exclusive)."
""
"The number of elements in the output of range is computed as below-"
""
"number_of_elements = max( ceil( (limit - start) / delta ) , 0 )
"
""
"The pseudocode determining the contents of the output is shown below-"
""
"for(int i=0; i<number_of_elements; ++i)
"
""
"{
"
" "
" output[i] = start + (i * delta);
"
""
"}
"
""
"Example 1
"
"Inputs: start = 3, limit = 9, delta = 3"
"Output: [3, 6]"
""
"Example 2
"
"Inputs: start = 10, limit = 4, delta = -2"
"Output: [10, 8, 6]"
""
Operands:
start
: memref of any type values or tensor of any type valueslimit
: memref of any type values or tensor of any type valuesdelta
: memref of any type values or tensor of any type values
Attributes:
Results:
output
: memref of any type values or tensor of any type values
onnx.Reciprocal (ONNXReciprocalOp)
ONNX Reciprocal operation
Description:
"Reciprocal takes one input data (Tensor) and produces one output data" "(Tensor) where the reciprocal is, y = 1/x, is applied to" "the tensor elementwise."
Operands:
X
: memref of any type values or tensor of any type values
Attributes:
Results:
Y
: memref of any type values or tensor of any type values
onnx.ReduceL1 (ONNXReduceL1Op)
ONNX ReduceL1 operation
Description:
"Computes the L1 norm of the input tensor's element along the provided axes. The resulted" "tensor has the same rank as the input if keepdims equal 1. If keepdims equal 0, then" "the resulted tensor have the reduced dimension pruned." "" "The above behavior is similar to numpy, with the exception that numpy default keepdims to" "False instead of True."
Operands:
data
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
axes |
ArrayAttr |
64-bit integer array attribute attribute |
keepdims |
IntegerAttr |
64-bit integer attribute attribute |
Results:
reduced
: memref of any type values or tensor of any type values
onnx.ReduceL2 (ONNXReduceL2Op)
ONNX ReduceL2 operation
Description:
"Computes the L2 norm of the input tensor's element along the provided axes. The resulted" "tensor has the same rank as the input if keepdims equal 1. If keepdims equal 0, then" "the resulted tensor have the reduced dimension pruned." "" "The above behavior is similar to numpy, with the exception that numpy default keepdims to" "False instead of True."
Operands:
data
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
axes |
ArrayAttr |
64-bit integer array attribute attribute |
keepdims |
IntegerAttr |
64-bit integer attribute attribute |
Results:
reduced
: memref of any type values or tensor of any type values
onnx.ReduceLogSumExp (ONNXReduceLogSumExpOp)
ONNX ReduceLogSumExp operation
Description:
"Computes the log sum exponent of the input tensor's element along the provided axes. The resulted" "tensor has the same rank as the input if keepdims equal 1. If keepdims equal 0, then" "the resulted tensor have the reduced dimension pruned." "" "The above behavior is similar to numpy, with the exception that numpy default keepdims to" "False instead of True."
Operands:
data
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
axes |
ArrayAttr |
64-bit integer array attribute attribute |
keepdims |
IntegerAttr |
64-bit integer attribute attribute |
Results:
reduced
: memref of any type values or tensor of any type values
onnx.ReduceLogSum (ONNXReduceLogSumOp)
ONNX ReduceLogSum operation
Description:
"Computes the log sum of the input tensor's element along the provided axes. The resulted" "tensor has the same rank as the input if keepdims equal 1. If keepdims equal 0, then" "the resulted tensor have the reduced dimension pruned." "" "The above behavior is similar to numpy, with the exception that numpy default keepdims to" "False instead of True."
Operands:
data
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
axes |
ArrayAttr |
64-bit integer array attribute attribute |
keepdims |
IntegerAttr |
64-bit integer attribute attribute |
Results:
reduced
: memref of any type values or tensor of any type values
onnx.ReduceMax (ONNXReduceMaxOp)
ONNX ReduceMax operation
Description:
"Computes the max of the input tensor's element along the provided axes. The resulted" "tensor has the same rank as the input if keepdims equal 1. If keepdims equal 0, then" "the resulted tensor have the reduced dimension pruned." "" "The above behavior is similar to numpy, with the exception that numpy default keepdims to" "False instead of True."
Operands:
data
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
axes |
ArrayAttr |
64-bit integer array attribute attribute |
keepdims |
IntegerAttr |
64-bit integer attribute attribute |
Results:
reduced
: memref of any type values or tensor of any type values
onnx.ReduceMean (ONNXReduceMeanOp)
ONNX ReduceMean operation
Description:
"Computes the mean of the input tensor's element along the provided axes. The resulted" "tensor has the same rank as the input if keepdims equal 1. If keepdims equal 0, then" "the resulted tensor have the reduced dimension pruned." "" "The above behavior is similar to numpy, with the exception that numpy default keepdims to" "False instead of True."
Operands:
data
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
axes |
ArrayAttr |
64-bit integer array attribute attribute |
keepdims |
IntegerAttr |
64-bit integer attribute attribute |
Results:
reduced
: memref of any type values or tensor of any type values
onnx.ReduceMin (ONNXReduceMinOp)
ONNX ReduceMin operation
Description:
"Computes the min of the input tensor's element along the provided axes. The resulted" "tensor has the same rank as the input if keepdims equal 1. If keepdims equal 0, then" "the resulted tensor have the reduced dimension pruned." "" "The above behavior is similar to numpy, with the exception that numpy default keepdims to" "False instead of True."
Operands:
data
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
axes |
ArrayAttr |
64-bit integer array attribute attribute |
keepdims |
IntegerAttr |
64-bit integer attribute attribute |
Results:
reduced
: memref of any type values or tensor of any type values
onnx.ReduceProd (ONNXReduceProdOp)
ONNX ReduceProd operation
Description:
"Computes the product of the input tensor's element along the provided axes. The resulted" "tensor has the same rank as the input if keepdims equal 1. If keepdims equal 0, then" "the resulted tensor have the reduced dimension pruned." "" "The above behavior is similar to numpy, with the exception that numpy default keepdims to" "False instead of True."
Operands:
data
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
axes |
ArrayAttr |
64-bit integer array attribute attribute |
keepdims |
IntegerAttr |
64-bit integer attribute attribute |
Results:
reduced
: memref of any type values or tensor of any type values
onnx.ReduceSum (ONNXReduceSumOp)
ONNX ReduceSum operation
Description:
"Computes the sum of the input tensor's element along the provided axes. The resulted" "tensor has the same rank as the input if keepdims equal 1. If keepdims equal 0, then" "the resulted tensor have the reduced dimension pruned." "" "The above behavior is similar to numpy, with the exception that numpy default keepdims to" "False instead of True."
Operands:
data
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
axes |
ArrayAttr |
64-bit integer array attribute attribute |
keepdims |
IntegerAttr |
64-bit integer attribute attribute |
Results:
reduced
: memref of any type values or tensor of any type values
onnx.ReduceSumSquare (ONNXReduceSumSquareOp)
ONNX ReduceSumSquare operation
Description:
"Computes the sum square of the input tensor's element along the provided axes. The resulted" "tensor has the same rank as the input if keepdims equal 1. If keepdims equal 0, then" "the resulted tensor have the reduced dimension pruned." "" "The above behavior is similar to numpy, with the exception that numpy default keepdims to" "False instead of True."
Operands:
data
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
axes |
ArrayAttr |
64-bit integer array attribute attribute |
keepdims |
IntegerAttr |
64-bit integer attribute attribute |
Results:
reduced
: memref of any type values or tensor of any type values
onnx.Relu (ONNXReluOp)
ONNX Relu operation
Description:
"Relu takes one input data (Tensor) and produces one output data" "(Tensor) where the rectified linear function, y = max(0, x), is applied to" "the tensor elementwise."
Operands:
X
: memref of any type values or tensor of any type values
Attributes:
Results:
Y
: memref of any type values or tensor of any type values
onnx.Reshape (ONNXReshapeOp)
ONNX Reshape operation
Description:
"Reshape the input tensor similar to numpy.reshape." "First input is the data tensor, second input is a shape tensor which specifies the output shape. It outputs the reshaped tensor." "At most one dimension of the new shape can be -1. In this case, the value is" "inferred from the size of the tensor and the remaining dimensions. A dimension" "could also be 0, in which case the actual dimension value is unchanged (i.e. taken" "from the input tensor)."
Operands:
data
: memref of any type values or tensor of any type valuesshape
: memref of any type values or tensor of any type values
Attributes:
Results:
reshaped
: memref of any type values or tensor of any type values
onnx.Resize (ONNXResizeOp)
ONNX Resize operation
Description:
"Resize the input tensor. In general, it calculates every value in the output tensor as a weighted average of neighborhood (a.k.a. sampling locations) in the input tensor." "Each dimension value of the output tensor is:" " output_dimension = floor(input_dimension * (roi_end - roi_start) * scale) if input "sizes" is not specified."
Operands:
X
: memref of any type values or tensor of any type valuesroi
: memref of any type values or tensor of any type valuesscales
: memref of any type values or tensor of any type valuessizes
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
coordinate_transformation_mode |
StringAttr |
string attribute attribute |
cubic_coeff_a |
FloatAttr |
32-bit float attribute attribute |
exclude_outside |
IntegerAttr |
64-bit integer attribute attribute |
extrapolation_value |
FloatAttr |
32-bit float attribute attribute |
mode |
StringAttr |
string attribute attribute |
nearest_mode |
StringAttr |
string attribute attribute |
Results:
Y
: memref of any type values or tensor of any type values
onnx.ReverseSequence (ONNXReverseSequenceOp)
ONNX ReverseSequence operation
Description:
"Reverse batch of sequences having different lengths specified by sequence_lens
."
""
"For each slice i iterating on batch axis, the operator reverses the first sequence_lens[i] elements on time axis,"
"and copies elements whose index's beyond sequence_lens[i] to the output. So the output slice i contains reversed"
"sequences on the first sequence_lens[i] elements, then have original values copied for the other elements."
""
"Example 1:"
" input = [[0.0, 4.0, 8.0, 12.0],"
" [1.0, 5.0, 9.0, 13.0],"
" [2.0, 6.0, 10.0, 14.0],"
" [3.0, 7.0, 11.0, 15.0]]"
" sequence_lens = [4, 3, 2, 1]"
" time_axis = 0"
" batch_axis = 1"
""
" output = [[3.0, 6.0, 9.0, 12.0],"
" [2.0, 5.0, 8.0, 13.0],"
" [1.0, 4.0, 10.0, 14.0],"
" [0.0, 7.0, 11.0, 15.0]]"
""
"Example 2:"
" input = [[0.0, 1.0, 2.0, 3.0 ],"
" [4.0, 5.0, 6.0, 7.0 ],"
" [8.0, 9.0, 10.0, 11.0],"
" [12.0, 13.0, 14.0, 15.0]]"
" sequence_lens = [1, 2, 3, 4]"
" time_axis = 1"
" batch_axis = 0"
""
" output = [[0.0, 1.0, 2.0, 3.0 ],"
" [5.0, 4.0, 6.0, 7.0 ],"
" [10.0, 9.0, 8.0, 11.0],"
" [15.0, 14.0, 13.0, 12.0]]"
Operands:
input
: memref of any type values or tensor of any type valuessequence_lens
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
batch_axis |
IntegerAttr |
64-bit integer attribute attribute |
time_axis |
IntegerAttr |
64-bit integer attribute attribute |
Results:
Y
: memref of any type values or tensor of any type values
onnx.RoiAlign (ONNXRoiAlignOp)
ONNX RoiAlign operation
Description:
"Region of Interest (RoI) align operation described in the" "Mask R-CNN paper." "RoiAlign consumes an input tensor X and region of interests (rois)" "to apply pooling across each RoI; it produces a 4-D tensor of shape" "(num_rois, C, output_height, output_width)." "" "RoiAlign is proposed to avoid the misalignment by removing" "quantizations while converting from original image into feature" "map and from feature map into RoI feature; in each ROI bin," "the value of the sampled locations are computed directly" "through bilinear interpolation."
Operands:
X
: memref of any type values or tensor of any type valuesrois
: memref of any type values or tensor of any type valuesbatch_indices
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
mode |
StringAttr |
string attribute attribute |
output_height |
IntegerAttr |
64-bit integer attribute attribute |
output_width |
IntegerAttr |
64-bit integer attribute attribute |
sampling_ratio |
IntegerAttr |
64-bit integer attribute attribute |
spatial_scale |
FloatAttr |
32-bit float attribute attribute |
Results:
Y
: memref of any type values or tensor of any type values
onnx.Round (ONNXRoundOp)
ONNX Round operation
Description:
"Round takes one input Tensor and rounds the values, element-wise, meaning"
"it finds the nearest integer for each value."
"In case of halfs, the rule is to round them to the nearest even integer."
"The output tensor has the same shape and type as the input."
""
"Examples:"
"" "round([0.9]) = [1.0]" "round([2.5]) = [2.0]" "round([2.3]) = [2.0]" "round([1.5]) = [2.0]" "round([-4.5]) = [-4.0]" "
"
Operands:
X
: memref of any type values or tensor of any type values
Attributes:
Results:
Y
: memref of any type values or tensor of any type values
onnx.Scan (ONNXScanOp)
ONNX Scan operation
Description:
"Scan can be used to iterate over one or more scan_input tensors," "constructing zero or more scan_output tensors. It combines ideas from general recurrences," "functional programming constructs such as scan, fold, map, and zip and is intended to enable" "generalizations of RNN-like constructs for sequence-to-sequence processing." "Other tensors (referred to as state_variables here) can be used to carry a state" "when iterating from one element to another (similar to hidden-state in RNNs, also referred" "to as loop-carried dependences in the context of loops)." "Many common usages involve a single scan_input tensor (where functionality" "similar to scan, fold and map can be obtained). When more than one scan_input is used," "a behavior similar to zip is obtained." "" "The attribute body must be a graph, specifying the computation to be performed in" "every iteration. It takes as input the current values of the state_variables and" "the current iterated element of the scan_inputs. It must return the (updated) values" "of the state_variables and zero or more scan_output_element tensors. The values of the" "scan_output_element tensors are concatenated over all the iterations to produce the" "scan_output values of the scan construct (similar to the concatenated intermediate" "hidden-state values of RNN-like constructs). All the output tensors (state_variables as" "well as scan_output_element tensors) are required to have the same shape in each iteration" "of the loop (a restriction imposed to enable efficient memory allocation)." "" "Note that the iterated element passed to the body subgraph does not have a sequence" "axis. It will have a rank one less than the rank of the corresponding scan_input." "" "The scan operation returns the final values of the state_variables as well as the" "scan_outputs." "" "The optional attribute scan_input_directions specifies the direction (forward or backward)" "for each scan input. If this attribute is omitted, all sequences are scanned in the forward" "direction. A bidirectional scan may be performed by specifying the same tensor input twice" "in the scan_inputs, once with a forward direction, and once with a backward direction." "" "The scan_output of the operation is produced by concatenating the scan_output_element" "values produced by the body in each iteration. The optional attribute scan_output_directions" "specifies the direction in which scan_output is constructed (by appending or prepending the" "scan_output_element to scan_output in each iteration) for each scan_output. If this attribute" "is omitted, the scan_output_element is appended to the scan_output in each iteration." "" "The optional attribute scan_input_axes specifies the axis to be scanned for each scan_input." "If omitted, every scan_input will be scanned in axis 0. For example, if axis 0 is the" "batch axis and axis 1 is the time axis (to be scanned), specify an axis value of 1." "Note that scanning a non-zero axis may be less efficient than scanning axis zero." "" "The optional attribute scan_output_axes specifies the axis along which the scan_outputs" "are accumulated for each scan_output. For example, if axis 1 is the time axis (to be" "scanned) for both inputs and outputs, specify a scan_input axis and scan_output axis" "value of 1." "" "Note that because of the ONNX restriction that only the last parameter of an operator can" "be variadic, the initial-states and scan-inputs are listed together as one input parameter." "Similarly, the final-states and scan-outputs are listed together as one output parameter." "The attribute num_scan_inputs indicates the number M of scan-inputs." "" "The behavior of" "" " Scan <" " num_scan_inputs = m," " body = loop-body," " scan_input_axes = [axis_1, ..., axis_m]" " > (init_1, ..., init_n, scan_1, ..., scan_m)" "" "is equivalent to the following pseudo-code:" "" " // scan_i.shape[axis_i] denotes the (max) sequence-length of scan_i" " // scan_i.shape[axis_i] is required to be equal to scan_j.shape[axis_j] for all i,j." " sequence_length = scan_1.shape[axis_1];" "" " // initialize state-variables" " st_1 = init_1; ... st_n = init_n;" " // initialize scan-output variables: [] denotes an empty tensor" " scan_out_1 = []; ...; scan_out_k = [];" " // identify number of iterations:" "" " // execute loop" " for (int t = 0; t < sequence_length; ++t) {" " // generate the scan-input elements: the notation T<axis=k>[t] indicates the sub-tensor" " // of rank one less than T obtained by indexing T at position t along axis k." " si_1 = scan_1<axis=axis_1>[t];" " ... ;" " si_m = scan_m<axis=axis_m>[t];" " // execute loop-body" " st_1, ..., st_n, so_1, ..., so_k = loop-body(st_1, ..., st_n, si_1, ..., si_m)" " // accumulate the scan-output elements" " scan_out_1 = Concat<axis=0>(scan_out_1, so_1); ... ; scan_out_k = Concat<axis=0>(scan_out_k, so_k);" " }" "" " return st_1, ..., st_n, scan_out_1, ..., scan_out_k;" "" "Sample usage: Encoding RNN using a Scan" "" "The following example shows how a simple RNN over an input tensor %X, with weight tensor %Wi," "recurrence weight tensor %Ri, bias tensors %Wbi and %Rbi, and initial hidden-state %H_0 can" "be encoded as a ScanLoop. Note that the loop-body is a nested graph, and it directly computes" "%Wi, %Ri, %Wbi, and %Rbi (typically constants or initializers in the body graph). If these" "values are computed in the outer graph, they need to be passed in as extra state_variables." "" " graph rnn-encoding {" " %H_0 = ... " " %X = ..." " %Y_h, %Y = Scan[body = , num_scan_inputs=1](%H_0, %X)" " return %Y, %Y_h" " }" "" " graph rnn-cell-1 (" " %H_tminus1[FLOAT, tensor]" " %X_t[FLOAT, tensor]" " ) {" " %Wi = ..." " %Ri = ..." " %Wbi = ..." " %Rbi = ..." " %t1 = X_t * (Wi^T)" " %t2 = H_tminus1*(Ri^T)" " %t3 = Add(%t1, %t2)" " %t4 = Add(%t3, %Wbi)" " %t5 = Add(%t4, %Rbi)" " %Ht = Tanh(%t5)" " %Accumulate = Identity(%Ht)" " return %Ht, %Accumulate" " }" ""
Operands:
initial_state_and_scan_inputs
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
body |
Attribute |
any attribute attribute |
num_scan_inputs |
IntegerAttr |
64-bit integer attribute attribute |
scan_input_axes |
ArrayAttr |
64-bit integer array attribute attribute |
scan_input_directions |
ArrayAttr |
64-bit integer array attribute attribute |
scan_output_axes |
ArrayAttr |
64-bit integer array attribute attribute |
scan_output_directions |
ArrayAttr |
64-bit integer array attribute attribute |
Results:
final_state_and_scan_outputs
: memref of any type values or tensor of any type values
onnx.ScatterElements (ONNXScatterElementsOp)
ONNX ScatterElements operation
Description:
"ScatterElements takes three inputs data
, updates
, and indices
of the same"
"rank r >= 1 and an optional attribute axis that identifies an axis of data
"
"(by default, the outer-most axis, that is axis 0). The output of the operation"
"is produced by creating a copy of the input data
, and then updating its value"
"to values specified by updates
at specific index positions specified by"
"indices
. Its output shape is the same as the shape of data
."
""
"For each entry in updates
, the target index in data
is obtained by combining"
"the corresponding entry in indices
with the index of the entry itself: the"
"index-value for dimension = axis is obtained from the value of the corresponding"
"entry in indices
and the index-value for dimension != axis is obtained from the"
"index of the entry itself."
""
"For instance, in a 2-D tensor case, the update corresponding to the [i][j] entry"
"is performed as below:"
"" " output[indices[i][j]][j] = updates[i][j] if axis = 0, " " output[i][indices[i][j]] = updates[i][j] if axis = 1," "
"
""
"This operator is the inverse of GatherElements. It is similar to Torch's Scatter operation."
""
"Example 1:"
"" " data = [" " [0.0, 0.0, 0.0]," " [0.0, 0.0, 0.0]," " [0.0, 0.0, 0.0]," " ]" " indices = [" " [1, 0, 2]," " [0, 2, 1]," " ]" " updates = [" " [1.0, 1.1, 1.2]," " [2.0, 2.1, 2.2]," " ]" " output = [" " [2.0, 1.1, 0.0]" " [1.0, 0.0, 2.2]" " [0.0, 2.1, 1.2]" " ]" "
"
"Example 2:"
"" " data = [[1.0, 2.0, 3.0, 4.0, 5.0]]" " indices = [[1, 3]]" " updates = [[1.1, 2.1]]" " axis = 1" " output = [[1.0, 1.1, 3.0, 2.1, 5.0]]" "
"
Operands:
data
: memref of any type values or tensor of any type valuesindices
: memref of any type values or tensor of any type valuesupdates
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
axis |
IntegerAttr |
64-bit integer attribute attribute |
Results:
output
: memref of any type values or tensor of any type values
onnx.ScatterND (ONNXScatterNDOp)
ONNX ScatterND operation
Description:
"ScatterND takes three inputs data
tensor of rank r >= 1, indices
tensor of rank q >= 1,"
"and updates
tensor of rank q + r - indices.shape[-1] - 1. The output of the operation"
"is produced by creating a copy of the input data
, and then updating its value to values"
"specified by updates
at specific index positions specified by indices
. Its output shape"
"is the same as the shape of data
. Note that indices
should not have duplicate entries."
"That is, two or more updates
for the same index-location is not supported."
""
"indices
is an integer tensor. Let k denote indices.shape[-1], the last dimension in the shape of indices
."
" indices
is treated as a (q-1)-dimensional tensor of k-tuples, where each k-tuple is a partial-index into data
."
"Hence, k can be a value at most the rank of data
. When k equals rank(data), each update entry specifies an"
"update to a single element of the tensor. When k is less than rank(data) each update entry specifies an"
"update to a slice of the tensor."
""
"updates
is treated as a (q-1)-dimensional tensor of replacement-slice-values. Thus, the"
"first (q-1) dimensions of updates.shape must match the first (q-1) dimensions of indices.shape."
"The remaining dimensions of updates
correspond to the dimensions of the"
"replacement-slice-values. Each replacement-slice-value is a (r-k) dimensional tensor,"
"corresponding to the trailing (r-k) dimensions of data
. Thus, the shape of updates
"
"must equal indices.shape[0:q-1] ++ data.shape[k:r-1], where ++ denotes the concatenation"
"of shapes."
""
"The output
is calculated via the following equation:"
""
" output = np.copy(data)"
" update_indices = indices.shape[:-1]"
" for idx in np.ndindex(update_indices):"
" output[indices[idx]] = updates[idx]"
""
"The order of iteration in the above loop is not specified."
"In particular, indices should not have duplicate entries: that is, if idx1 != idx2, then indices[idx1] != indices[idx2]."
"This ensures that the output value does not depend on the iteration order."
""
"This operator is the inverse of GatherND."
""
"Example 1:"
"" " data = [1, 2, 3, 4, 5, 6, 7, 8]" " indices = [[4], [3], [1], [7]]" " updates = [9, 10, 11, 12]" " output = [1, 11, 3, 10, 9, 6, 7, 12]" "
"
""
"Example 2:"
"" " data = [[[1, 2, 3, 4], [5, 6, 7, 8], [8, 7, 6, 5], [4, 3, 2, 1]]," " [[1, 2, 3, 4], [5, 6, 7, 8], [8, 7, 6, 5], [4, 3, 2, 1]]," " [[8, 7, 6, 5], [4, 3, 2, 1], [1, 2, 3, 4], [5, 6, 7, 8]]," " [[8, 7, 6, 5], [4, 3, 2, 1], [1, 2, 3, 4], [5, 6, 7, 8]]]" " indices = [[0], [2]]" " updates = [[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]]," " [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]]]" " output = [[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]]," " [[1, 2, 3, 4], [5, 6, 7, 8], [8, 7, 6, 5], [4, 3, 2, 1]]," " [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]]," " [[8, 7, 6, 5], [4, 3, 2, 1], [1, 2, 3, 4], [5, 6, 7, 8]]]" "
"
Operands:
data
: memref of any type values or tensor of any type valuesindices
: memref of any type values or tensor of any type valuesupdates
: memref of any type values or tensor of any type values
Attributes:
Results:
output
: memref of any type values or tensor of any type values
onnx.Scatter (ONNXScatterOp)
ONNX Scatter operation
Description:
"This operator is deprecated. Please use ScatterElements, which provides the same functionality."
""
"Scatter takes three inputs data
, updates
, and indices
of the same"
"rank r >= 1 and an optional attribute axis that identifies an axis of data
"
"(by default, the outer-most axis, that is axis 0). The output of the operation"
"is produced by creating a copy of the input data
, and then updating its value"
"to values specified by updates
at specific index positions specified by"
"indices
. Its output shape is the same as the shape of data
."
""
"For each entry in updates
, the target index in data
is obtained by combining"
"the corresponding entry in indices
with the index of the entry itself: the"
"index-value for dimension = axis is obtained from the value of the corresponding"
"entry in indices
and the index-value for dimension != axis is obtained from the"
"index of the entry itself."
""
"For instance, in a 2-D tensor case, the update corresponding to the [i][j] entry"
"is performed as below:"
"" " output[indices[i][j]][j] = updates[i][j] if axis = 0, " " output[i][indices[i][j]] = updates[i][j] if axis = 1," "
"
""
"This operator is the inverse of GatherElements. It is similar to Torch's Scatter operation."
""
"Example 1:"
"" " data = [" " [0.0, 0.0, 0.0]," " [0.0, 0.0, 0.0]," " [0.0, 0.0, 0.0]," " ]" " indices = [" " [1, 0, 2]," " [0, 2, 1]," " ]" " updates = [" " [1.0, 1.1, 1.2]," " [2.0, 2.1, 2.2]," " ]" " output = [" " [2.0, 1.1, 0.0]" " [1.0, 0.0, 2.2]" " [0.0, 2.1, 1.2]" " ]" "
"
"Example 2:"
"" " data = [[1.0, 2.0, 3.0, 4.0, 5.0]]" " indices = [[1, 3]]" " updates = [[1.1, 2.1]]" " axis = 1" " output = [[1.0, 1.1, 3.0, 2.1, 5.0]]" "
"
Operands:
data
: memref of any type values or tensor of any type valuesindices
: memref of any type values or tensor of any type valuesupdates
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
axis |
IntegerAttr |
64-bit integer attribute attribute |
Results:
output
: memref of any type values or tensor of any type values
onnx.Selu (ONNXSeluOp)
ONNX Selu operation
Description:
"Selu takes one input data (Tensor) and produces one output data"
"(Tensor) where the scaled exponential linear unit function,"
"y = gamma * (alpha * e^x - alpha) for x <= 0
, y = gamma * x for x > 0
,"
"is applied to the tensor elementwise."
Operands:
X
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
alpha |
FloatAttr |
32-bit float attribute attribute |
gamma |
FloatAttr |
32-bit float attribute attribute |
Results:
Y
: memref of any type values or tensor of any type values
onnx.SequenceAt (ONNXSequenceAtOp)
ONNX SequenceAt operation
Description:
"Outputs a tensor copy from the tensor at 'position' in 'input_sequence'."
"Accepted range for 'position' is in [-n, n - 1]
, where n
is the number of tensors in 'input_sequence'."
"Negative value means counting positions from the back."
Operands:
input_sequence
: memref of any type values or tensor of any type valuesposition
: memref of any type values or tensor of any type values
Attributes:
Results:
tensor
: memref of any type values or tensor of any type values
onnx.SequenceConstruct (ONNXSequenceConstructOp)
ONNX SequenceConstruct operation
Description:
"Construct a tensor sequence containing 'inputs' tensors." "All tensors in 'inputs' must have the same data type."
Operands:
inputs
: memref of any type values or tensor of any type values
Attributes:
Results:
output_sequence
: memref of any type values or tensor of any type values
onnx.SequenceEmpty (ONNXSequenceEmptyOp)
ONNX SequenceEmpty operation
Description:
"Construct an empty tensor sequence, with given data type."
Operands:
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
dtype |
IntegerAttr |
64-bit integer attribute attribute |
Results:
output
: memref of any type values or tensor of any type values
onnx.SequenceErase (ONNXSequenceEraseOp)
ONNX SequenceErase operation
Description:
"Outputs a tensor sequence that removes the tensor at 'position' from 'input_sequence'."
"Accepted range for 'position' is in [-n, n - 1]
, where n
is the number of tensors in 'input_sequence'."
"Negative value means counting positions from the back."
"'position' is optional, by default it erases the last tensor from 'input_sequence'."
Operands:
input_sequence
: memref of any type values or tensor of any type valuesposition
: memref of any type values or tensor of any type values
Attributes:
Results:
output_sequence
: memref of any type values or tensor of any type values
onnx.SequenceInsert (ONNXSequenceInsertOp)
ONNX SequenceInsert operation
Description:
"Outputs a tensor sequence that inserts 'tensor' into 'input_sequence' at 'position'."
"'tensor' must have the same data type as 'input_sequence'."
"Accepted range for 'position' is in [-n, n]
, where n
is the number of tensors in 'input_sequence'."
"Negative value means counting positions from the back."
"'position' is optional, by default it inserts 'tensor' to the back of 'input_sequence'."
Operands:
input_sequence
: memref of any type values or tensor of any type valuestensor
: memref of any type values or tensor of any type valuesposition
: memref of any type values or tensor of any type values
Attributes:
Results:
output_sequence
: memref of any type values or tensor of any type values
onnx.SequenceLength (ONNXSequenceLengthOp)
ONNX SequenceLength operation
Description:
"Produces a scalar(tensor of empty shape) containing the number of tensors in 'input_sequence'."
Operands:
input_sequence
: memref of any type values or tensor of any type values
Attributes:
Results:
length
: memref of any type values or tensor of any type values
onnx.Shape (ONNXShapeOp)
ONNX Shape operation
Description:
"Takes a tensor as input and outputs an 1D int64 tensor containing the shape of the input tensor."
Operands:
data
: memref of any type values or tensor of any type values
Attributes:
Results:
shape
: memref of any type values or tensor of any type values
onnx.Shrink (ONNXShrinkOp)
ONNX Shrink operation
Description:
"Shrink takes one input data (Tensor) and produces one Tensor output," "having same datatype and shape with input. It has two attributes, lambd and" "bias. The formula of this operator is: If x < -lambd, y = x + bias;" "If x > lambd, y = x - bias; Otherwise, y = 0."
Operands:
input
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
bias |
FloatAttr |
32-bit float attribute attribute |
lambd |
FloatAttr |
32-bit float attribute attribute |
Results:
output
: memref of any type values or tensor of any type values
onnx.Sigmoid (ONNXSigmoidOp)
ONNX Sigmoid operation
Description:
"Sigmoid takes one input data (Tensor) and produces one output data" "(Tensor) where the sigmoid function, y = 1 / (1 + exp(-x)), is applied to the" "tensor elementwise."
Operands:
X
: memref of any type values or tensor of any type values
Attributes:
Results:
Y
: memref of any type values or tensor of any type values
onnx.Sign (ONNXSignOp)
ONNX Sign operation
Description:
"Calculate the sign of the given input tensor element-wise." "If input > 0, output 1. if input < 0, output -1. if input == 0, output 0."
Operands:
input
: memref of any type values or tensor of any type values
Attributes:
Results:
output
: memref of any type values or tensor of any type values
onnx.Sin (ONNXSinOp)
ONNX Sin operation
Description:
"Calculates the sine of the given input tensor, element-wise."
Operands:
input
: memref of any type values or tensor of any type values
Attributes:
Results:
output
: memref of any type values or tensor of any type values
onnx.Sinh (ONNXSinhOp)
ONNX Sinh operation
Description:
"Calculates the hyperbolic sine of the given input tensor element-wise."
Operands:
input
: memref of any type values or tensor of any type values
Attributes:
Results:
output
: memref of any type values or tensor of any type values
onnx.Size (ONNXSizeOp)
ONNX Size operation
Description:
"Takes a tensor as input and outputs a int64 scalar that equals to the total number of elements of the input tensor."
Operands:
data
: memref of any type values or tensor of any type values
Attributes:
Results:
size
: memref of any type values or tensor of any type values
onnx.Slice (ONNXSliceOp)
ONNX Slice operation
Description:
"Produces a slice of the input tensor along multiple axes. Similar to numpy:"
"https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html"
"Slices uses starts
, ends
, axes
and steps
inputs to specify the start and end"
"dimension and step for each axis in the list of axes, it uses this information to"
"slice the input data
tensor. If a negative value is passed for any of the"
"start or end indices, it represent number of elements before the end of that"
"dimension. If the value passed to start or end is larger than the n
(the"
"number of elements in this dimension), it represents n
. For slicing to the"
"end of a dimension with unknown size, it is recommended to pass in INT_MAX
."
"If a negative value is passed for step, it represents slicing backward."
"If axes
are omitted, they are set to [0, ..., ndim-1]
."
"If steps
are omitted, they are set to [1, ..., 1]
of length len(starts)
"
"Example 1:"
" data = ["
" [1, 2, 3, 4],"
" [5, 6, 7, 8],"
" ]"
" axes = [0, 1]"
" starts = [1, 0]"
" ends = [2, 3]"
" steps = [1, 2]"
" result = ["
" [5, 7],"
" ]"
"Example 2:"
" data = ["
" [1, 2, 3, 4],"
" [5, 6, 7, 8],"
" ]"
" starts = [0, 1]"
" ends = [-1, 1000]"
" result = ["
" [2, 3, 4],"
" ]"
Operands:
data
: memref of any type values or tensor of any type valuesstarts
: memref of any type values or tensor of any type valuesends
: memref of any type values or tensor of any type valuesaxes
: memref of any type values or tensor of any type valuessteps
: memref of any type values or tensor of any type values
Attributes:
Results:
output
: memref of any type values or tensor of any type values
onnx.Softmax (ONNXSoftmaxOp)
ONNX Softmax operation
Description:
"The operator computes the softmax (normalized exponential) values for each layer in the batch" " of the given input." "" "The input does not need to explicitly be a 2D vector; rather, it will be" "coerced into one. For an arbitrary n-dimensional tensor" "input \in [a_0, a_1, ..., a_{k-1}, a_k, ..., a_{n-1}] and k is" "the axis provided, then input will be coerced into a 2-dimensional tensor with" "dimensions [a_0 * ... * a_{k-1}, a_k * ... * a_{n-1}]. For the default" "case where axis=1, this means the input tensor will be coerced into a 2D tensor" "of dimensions [a_0, a_1 * ... * a_{n-1}], where a_0 is often the batch size." "In this situation, we must have a_0 = N and a_1 * ... * a_{n-1} = D." "Each of these dimensions must be matched correctly, or else the operator" "will throw errors. The output tensor has the same shape" "and contains the softmax values of the corresponding input."
Operands:
input
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
axis |
IntegerAttr |
64-bit integer attribute attribute |
Results:
output
: memref of any type values or tensor of any type values
onnx.Softplus (ONNXSoftplusOp)
ONNX Softplus operation
Description:
"Softplus takes one input data (Tensor) and produces one output data" "(Tensor) where the softplus function, y = ln(exp(x) + 1), is applied to" "the tensor elementwise."
Operands:
X
: memref of any type values or tensor of any type values
Attributes:
Results:
Y
: memref of any type values or tensor of any type values
onnx.Softsign (ONNXSoftsignOp)
ONNX Softsign operation
Description:
"Calculates the softsign (x/(1+|x|)) of the given input tensor element-wise."
Operands:
input
: memref of any type values or tensor of any type values
Attributes:
Results:
output
: memref of any type values or tensor of any type values
onnx.SpaceToDepth (ONNXSpaceToDepthOp)
ONNX SpaceToDepth operation
Description:
"SpaceToDepth rearranges blocks of spatial data into depth. More specifically," "this op outputs a copy of the input tensor where values from the height and width dimensions" "are moved to the depth dimension."
Operands:
input
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
blocksize |
IntegerAttr |
64-bit integer attribute attribute |
Results:
output
: memref of any type values or tensor of any type values
onnx.Split (ONNXSplitOp)
ONNX Split operation
Description:
"Split a tensor into a list of tensors, along the specified" "'axis'. Lengths of the parts can be specified using argument 'split'." "Otherwise, the tensor is split to equal sized parts."
Operands:
input
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
axis |
IntegerAttr |
64-bit integer attribute attribute |
split |
ArrayAttr |
64-bit integer array attribute attribute |
Results:
outputs
: memref of any type values or tensor of any type values
onnx.SplitToSequence (ONNXSplitToSequenceOp)
ONNX SplitToSequence operation
Description:
"Split a tensor into a sequence of tensors, along the specified" "'axis'. Lengths of the parts can be specified using argument 'split'." "'split' must contain only positive numbers." "'split' is either a scalar (tensor of empty shape), or a 1-D tensor." "If 'split' is a scalar, then 'input' will be split into equally sized chunks(if possible)." "Last chunk will be smaller if the 'input' size along the given axis 'axis' is not divisible" "by 'split'." "Otherwise, the tensor is split into 'size(split)' chunks, with lengths of the parts on 'axis'" "specified in 'split'. In this scenario, the sum of entries in 'split' must be equal to the" "dimension size of input tensor on 'axis'."
Operands:
input
: memref of any type values or tensor of any type valuessplit
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
axis |
IntegerAttr |
64-bit integer attribute attribute |
keepdims |
IntegerAttr |
64-bit integer attribute attribute |
Results:
output_sequence
: memref of any type values or tensor of any type values
onnx.Sqrt (ONNXSqrtOp)
ONNX Sqrt operation
Description:
"Square root takes one input data (Tensor) and produces one output data" "(Tensor) where the square root is, y = x^0.5, is applied to" "the tensor elementwise. If x is negative, then it will return NaN."
Operands:
X
: memref of any type values or tensor of any type values
Attributes:
Results:
Y
: memref of any type values or tensor of any type values
onnx.Squeeze (ONNXSqueezeOp)
ONNX Squeeze operation
Description:
"Remove single-dimensional entries from the shape of a tensor."
"Takes a parameter axes
with a list of axes to squeeze."
"If axes
is not provided, all the single dimensions will be removed from"
"the shape. If an axis is selected with shape entry not equal to one, an error is raised."
Operands:
data
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
axes |
ArrayAttr |
64-bit integer array attribute attribute |
Results:
squeezed
: memref of any type values or tensor of any type values
onnx.StringNormalizer (ONNXStringNormalizerOp)
ONNX StringNormalizer operation
Description:
"StringNormalization performs string operations for basic cleaning." "This operator has only one input (denoted by X) and only one output" "(denoted by Y). This operator first examines the elements in the X," "and removes elements specified in "stopwords" attribute." "After removing stop words, the intermediate result can be further lowercased," "uppercased, or just returned depending the "case_change_action" attribute." "This operator only accepts [C]- and [1, C]-tensor." "If all elements in X are dropped, the output will be the empty value of string tensor with shape [1]" "if input shape is [C] and shape [1, 1] if input shape is [1, C]."
Operands:
X
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
case_change_action |
StringAttr |
string attribute attribute |
is_case_sensitive |
IntegerAttr |
64-bit integer attribute attribute |
locale |
StringAttr |
string attribute attribute |
stopwords |
ArrayAttr |
string array attribute attribute |
Results:
Y
: memref of any type values or tensor of any type values
onnx.Sub (ONNXSubOp)
ONNX Sub operation
Description:
"Performs element-wise binary subtraction (with Numpy-style broadcasting support)." "" "This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check the doc."
Operands:
A
: memref of any type values or tensor of any type valuesB
: memref of any type values or tensor of any type values
Attributes:
Results:
C
: memref of any type values or tensor of any type values
onnx.Sum (ONNXSumOp)
ONNX Sum operation
Description:
"Element-wise sum of each of the input tensors (with Numpy-style broadcasting support)." "All inputs and outputs must have the same data type." "This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check the doc."
Operands:
data_0
: memref of any type values or tensor of any type values
Attributes:
Results:
sum
: memref of any type values or tensor of any type values
onnx.Tan (ONNXTanOp)
ONNX Tan operation
Description:
"Calculates the tangent of the given input tensor, element-wise."
Operands:
input
: memref of any type values or tensor of any type values
Attributes:
Results:
output
: memref of any type values or tensor of any type values
onnx.Tanh (ONNXTanhOp)
ONNX Tanh operation
Description:
"Calculates the hyperbolic tangent of the given input tensor element-wise."
Operands:
input
: memref of any type values or tensor of any type values
Attributes:
Results:
output
: memref of any type values or tensor of any type values
onnx.TfIdfVectorizer (ONNXTfIdfVectorizerOp)
ONNX TfIdfVectorizer operation
Description:
"This transform extracts n-grams from the input sequence and save them as a vector. Input can" "be either a 1-D or 2-D tensor. For 1-D input, output is the n-gram representation of that input." "For 2-D input, the output is also a 2-D tensor whose i-th row is the n-gram representation of the i-th input row." "More specifically, if input shape is [C], the corresponding output shape would be [max(ngram_indexes) + 1]." "If input shape is [N, C], this operator produces a [N, max(ngram_indexes) + 1]-tensor." "" "In contrast to standard n-gram extraction, here, the indexes of extracting an n-gram from the original" "sequence are not necessarily consecutive numbers. The discontinuity between indexes are controlled by the number of skips." "If the number of skips is 2, we should skip two tokens when scanning through the original sequence." "Let's consider an example. Assume that input sequence is [94, 17, 36, 12, 28] and the number of skips is 2." "The associated 2-grams are [94, 12] and [17, 28] respectively indexed by [0, 3] and [1, 4]." "If the number of skips becomes 0, the 2-grams generated are [94, 17], [17, 36], [36, 12], [12, 28]" "indexed by [0, 1], [1, 2], [2, 3], [3, 4], respectively." "" "The output vector (denoted by Y) stores the count of each n-gram;" "Y[ngram_indexes[i]] indicates the times that the i-th n-gram is found. The attribute ngram_indexes is used to determine the mapping" "between index i and the corresponding n-gram's output coordinate. If pool_int64s is [94, 17, 17, 36], ngram_indexes is [1, 0]," "ngram_counts=[0, 0], then the Y[0] (first element in Y) and Y[1] (second element in Y) are the counts of [17, 36] and [94, 17]," "respectively. An n-gram which cannot be found in pool_strings/pool_int64s should be ignored and has no effect on the output." "Note that we may consider all skips up to S when generating the n-grams." "" "The examples used above are true if mode is "TF". If mode is "IDF", all the counts larger than 1 would be truncated to 1 and" "the i-th element in weights would be used to scale (by multiplication) the count of the i-th n-gram in pool. If mode is "TFIDF"," "this operator first computes the counts of all n-grams and then scale them by the associated values in the weights attribute." "" "Only one of pool_strings and pool_int64s can be set. If pool_int64s is set, the input should be an integer tensor." "If pool_strings is set, the input must be a string tensor."
Operands:
X
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
max_gram_length |
IntegerAttr |
64-bit integer attribute attribute |
max_skip_count |
IntegerAttr |
64-bit integer attribute attribute |
min_gram_length |
IntegerAttr |
64-bit integer attribute attribute |
mode |
StringAttr |
string attribute attribute |
ngram_counts |
ArrayAttr |
64-bit integer array attribute attribute |
ngram_indexes |
ArrayAttr |
64-bit integer array attribute attribute |
pool_int64s |
ArrayAttr |
64-bit integer array attribute attribute |
pool_strings |
ArrayAttr |
string array attribute attribute |
weights |
ArrayAttr |
32-bit float array attribute attribute |
Results:
Y
: memref of any type values or tensor of any type values
onnx.ThresholdedRelu (ONNXThresholdedReluOp)
ONNX ThresholdedRelu operation
Description:
"ThresholdedRelu takes one input data (Tensor) and produces one output data" "(Tensor) where the rectified linear function, y = x for x > alpha, y = 0 otherwise," "is applied to the tensor elementwise."
Operands:
X
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
alpha |
FloatAttr |
32-bit float attribute attribute |
Results:
Y
: memref of any type values or tensor of any type values
onnx.Tile (ONNXTileOp)
ONNX Tile operation
Description:
"Constructs a tensor by tiling a given tensor."
"This is the same as function tile
in Numpy, but no broadcast."
"For example A = 1, 2], [3, 4, B = [1, 2], tile(A, B) = 1, 2, 1, 2], [3, 4, 3, 4"
Operands:
input
: memref of any type values or tensor of any type valuesrepeats
: memref of any type values or tensor of any type values
Attributes:
Results:
output
: memref of any type values or tensor of any type values
onnx.TopK (ONNXTopKOp)
ONNX TopK operation
Description:
"Retrieve the top-K largest or smallest elements along a specified axis. Given an input tensor of" "shape [a_1, a_2, ..., a_n, r] and integer argument k, return two outputs:" " -Value tensor of shape [a_1, a_2, ..., a_{axis-1}, k, a_{axis+1}, ... a_n]" " which contains the values of the top k elements along the specified axis" " -Index tensor of shape [a_1, a_2, ..., a_{axis-1}, k, a_{axis+1}, ... a_n] which" " contains the indices of the top k elements (original indices from the input" " tensor)." "" "If "largest" is 1 (the default value) then the k largest elements are returned." "If "sorted" is 1 (the default value) then the resulting k elements will be sorted." "If "sorted" is 0, order of returned 'Values' and 'Indices' are undefined." "" "Given two equivalent values, this operator uses the indices along the axis as" " a tiebreaker. That is, the element with the lower index will appear first."
Operands:
X
: memref of any type values or tensor of any type valuesK
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
axis |
IntegerAttr |
64-bit integer attribute attribute |
largest |
IntegerAttr |
64-bit integer attribute attribute |
sorted |
IntegerAttr |
64-bit integer attribute attribute |
Results:
Values
: memref of any type values or tensor of any type valuesIndices
: memref of any type values or tensor of any type values
onnx.Transpose (ONNXTransposeOp)
ONNX Transpose operation
Description:
"Transpose the input tensor similar to numpy.transpose. For example, when" "perm=(1, 0, 2), given an input tensor of shape (1, 2, 3), the output shape" "will be (2, 1, 3)."
Operands:
data
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
perm |
ArrayAttr |
64-bit integer array attribute attribute |
Results:
transposed
: memref of any type values or tensor of any type values
onnx.Unique (ONNXUniqueOp)
ONNX Unique operation
Description:
"Find the unique elements of a tensor. When an optional attribute 'axis' is provided, unique subtensors sliced along the 'axis' are returned. " "Otherwise the input tensor is flattened and unique values of the flattened tensor are returned. " "" "This operator returns the unique values or sliced unique subtensors of the input tensor and three optional outputs. " "The first output tensor 'Y' contains all unique values or subtensors of the input. " "The second optional output tensor 'indices' contains indices of 'Y' elements' first occurance in 'X'.. " "The third optional output tensor 'inverse_indices' contains, for elements of 'X', its corresponding indices in 'Y'. ". " "The fourth optional output tensor 'counts' contains the count of each element of 'Y' in the input. " "" "Outputs are either sorted in ascending order or optionally in the order of the first occurrence of the values in the input. " "" "https://docs.scipy.org/doc/numpy/reference/generated/numpy.unique.html" "" "Example 1:" " input_X = [2, 1, 1, 3, 4, 3]" " attribute_sorted = 0" " attribute_axis = None" " output_Y = [2, 1, 3, 4]" " output_indices = [0, 1, 3, 4]" " output_inverse_indices = [0, 1, 1, 2, 3, 2]" " output_counts = [1, 2, 2, 1]" "" "Example 2:" " input_X = 1, 3], [2, 3" " attribute_sorted = 1" " attribute_axis = None" " output_Y = [1, 2, 3]" " output_indices = [0, 2, 1]" " output_inverse_indices = [0, 2, 1, 2]" " output_counts = [1, 1, 2]" "" "Example 3:" " input_X = 1, 0, 0], [1, 0, 0], [2, 3, 4" " attribute_sorted = 1" " attribute_axis = 0" " output_Y = 1, 0, 0], [2, 3, 4" " output_indices = [0, 2]" " output_inverse_indices = [0, 0, 1]" " output_counts = [2, 1]" "" "Example 4:" " input_x = [1., 1.], [0., 1.], [2., 1.], [0., 1., " " 1., 1.], [0., 1.], [2., 1.], [0., 1.]" " attribute_sorted = 1" " attribute_axis = 1" "" " intermediate data are presented below for better understanding: " " " " there are 4 subtensors sliced along axis 1 of input_x (shape = (2, 4, 2)):" " A: 1, 1], [1, 1, " " 0, 1], [0, 1, " " 2, 1], [2, 1, " " 0, 1], [0, 1." " " " there are 3 unique subtensors: " " 1, 1], [1, 1, " " 0, 1], [0, 1, " " 2, 1], [2, 1." " " " sorted unique subtensors:" " B: 0, 1], [0, 1, " " 1, 1], [1, 1, " " 2, 1], [2, 1." " " " output_Y is constructed from B:" " [0. 1.], [1. 1.], [2. 1., " " 0. 1.], [1. 1.], [2. 1.]" "" " output_indices is to map from B to A:" " [1, 0, 2]" " " " output_inverse_indices is to map from A to B:" " [1, 0, 2, 0]" "" " output_counts = [2 1 1]"
Operands:
X
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
axis |
IntegerAttr |
64-bit integer attribute attribute |
sorted |
IntegerAttr |
64-bit integer attribute attribute |
Results:
Y
: memref of any type values or tensor of any type valuesindices
: memref of any type values or tensor of any type valuesinverse_indices
: memref of any type values or tensor of any type valuescounts
: memref of any type values or tensor of any type values
onnx.Unsqueeze (ONNXUnsqueezeOp)
ONNX Unsqueeze operation
Description:
"Insert single-dimensional entries to the shape of an input tensor (data
)."
"Takes one required argument axes
- which contains a list of dimension indices and this operator will insert a dimension of value 1
into the corresponding index of the output tensor (expanded
)."
""
"For example:"
" Given an input tensor (data
) of shape [3, 4, 5], then"
" Unsqueeze(data, axes=[0, 4]) outputs a tensor (expanded
) containing same data as data
but with shape [1, 3, 4, 5, 1]."
""
"The attribute axes
should not contain any duplicate entries. It is an error if it contains duplicates."
"The rank of the output tensor (output_rank
) is the rank of the input tensor (data
) plus the number of values in axes
."
"Each value in axes
should be within the (inclusive) range [-output_rank , output_rank - 1]. "
"The order of values in axes
does not matter and can come in any order. "
""
Operands:
data
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
axes |
ArrayAttr |
64-bit integer array attribute attribute |
Results:
expanded
: memref of any type values or tensor of any type values
onnx.Upsample (ONNXUpsampleOp)
ONNX Upsample operation
Description:
"Upsample the input tensor." "Each dimension value of the output tensor is:" " output_dimension = floor(input_dimension * scale)."
Operands:
X
: memref of any type values or tensor of any type valuesscales
: memref of any type values or tensor of any type values
Attributes:
Attribute | MLIR Type | Description |
---|---|---|
mode |
StringAttr |
string attribute attribute |
Results:
Y
: memref of any type values or tensor of any type values
onnx.Where (ONNXWhereOp)
ONNX Where operation
Description:
"Return elements, either from X or Y, depending on condition" " (with Numpy-style broadcasting support)." " Where behaves like numpy.where with three parameters:" " https://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html"
Operands:
condition
: memref of any type values or tensor of any type valuesX
: memref of any type values or tensor of any type valuesY
: memref of any type values or tensor of any type values
Attributes:
Results:
output
: memref of any type values or tensor of any type values
onnx.Xor (ONNXXorOp)
ONNX Xor operation
Description:
"Returns the tensor resulted from performing the xor
logical operation"
"elementwise on the input tensors A
and B
(with Numpy-style broadcasting support)."
""
"This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check the doc."
Operands:
A
: memref of any type values or tensor of any type valuesB
: memref of any type values or tensor of any type values
Attributes:
Results:
C
: memref of any type values or tensor of any type values