add input and output in resnet50 demo

This commit is contained in:
colin 2020-07-20 15:45:02 +08:00
parent a14983b756
commit 3d062150e9
13 changed files with 68 additions and 18 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 112 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 116 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 133 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 58 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 97 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 59 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 170 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 59 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 170 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 206 KiB

Binary file not shown.

View File

@ -235,3 +235,23 @@ int RN50_layer4__modules_2_bn3_weight[]={23414720,23416767,};
int RN50_layer4__modules_2_bn3_bias[]={23416768,23418815,};
int RN50_fc_weight[]={23418816,25466815,};
int RN50_fc_bias[]={25466816,25467815,};
int input_0[]={25467816,25618343,};
int output_0[]={25618344,25619343,};
int input_1[]={25619344,25769871,};
int output_1[]={25769872,25770871,};
int input_2[]={25770872,25921399,};
int output_2[]={25921400,25922399,};
int input_3[]={25922400,26072927,};
int output_3[]={26072928,26073927,};
int input_4[]={26073928,26224455,};
int output_4[]={26224456,26225455,};
int input_5[]={26225456,26375983,};
int output_5[]={26375984,26376983,};
int input_6[]={26376984,26527511,};
int output_6[]={26527512,26528511,};
int input_7[]={26528512,26679039,};
int output_7[]={26679040,26680039,};
int input_8[]={26680040,26830567,};
int output_8[]={26830568,26831567,};
int input_9[]={26831568,26982095,};
int output_9[]={26982096,26983095,};

View File

@ -14,11 +14,14 @@ import numpy as np
import struct
from struct import Struct
CurrentPath = os.path.split(os.path.realpath(__file__))[0]+"/"
resnet50 = models.resnet50(pretrained=True)
torch.save(resnet50, CurrentPath+'params.pth')
# torch.save(resnet50, CurrentPath+'params.pth')
resnet50 = torch.load(CurrentPath+'params.pth')
print("===========================")
print("===========================")
@ -29,20 +32,6 @@ print("===========================")
print("===========================")
# ss = resnet50.conv1.weight.cpu().detach().numpy().reshape(-1)
# ss = ss.tolist()
# strs = ''
# # for s in ss:
# # strs += str(s) + ","
# bs = struct.pack("f",1.0)
# f = open('data.hex', 'wb')
# f.write(bs)
# f.close()
# print(strs)
# ssa = ss.array()
ResNet50 = {
"conv1": "Conv2d",
"bn1": "BatchNorm2d",
@ -313,21 +302,62 @@ def printDick(d, head, obj):
return strg
strg = ''
strg = printDick(ResNet50, "RN50", resnet50)
ss = printDick(ResNet50, "RN50", resnet50)
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
weightfile.write(ss)
val_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(CurrentPath+'ImageNet/', transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])),
batch_size=1, shuffle=False,
num_workers=1, pin_memory=True)
for batch_idx, (data, target) in enumerate(val_loader):
strg = strg + "int input_"+str(batch_idx)+"[]={"
array = data.cpu().detach().numpy().reshape(-1)
strg += str(currentbyte) + ","
for a in array:
bs = struct.pack("f", a)
binaryfile.write(bs)
currentbyte = currentbyte+1
strg += str(currentbyte-1) + ","
strg = strg + "};\n"
out = resnet50(data)
strg = strg + "int output_"+str(batch_idx)+"[]={"
array = out.cpu().detach().numpy().reshape(-1)
strg += str(currentbyte) + ","
for a in array:
bs = struct.pack("f", a)
binaryfile.write(bs)
currentbyte = currentbyte+1
strg += str(currentbyte-1) + ","
strg = strg + "};\n"
weightfile.write(strg)
binaryfile.close()
weightfile.close()
print(ss)
print(strg)
print("===========================")
print("===========================")
print("===========================")
# ResNet(
# (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
# (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)