Add UnsuperLearnTrainWeight to train new weight kernel
This commit is contained in:
parent
d4a22775d4
commit
6201163e14
|
@ -53,32 +53,8 @@ model = utils.LoadModel(model, CurrentPath+"/checkpoint.pkl")
|
||||||
# traindata, testdata = Loader.RandomMnist(batchsize, style="VerticalOneLine")
|
# traindata, testdata = Loader.RandomMnist(batchsize, style="VerticalOneLine")
|
||||||
# traindata, testdata = Loader.RandomMnist(batchsize, style="VerticalZebra")
|
# traindata, testdata = Loader.RandomMnist(batchsize, style="VerticalZebra")
|
||||||
# traindata, testdata = Loader.Cifar10Mono(batchsize)
|
# traindata, testdata = Loader.Cifar10Mono(batchsize)
|
||||||
traindata, testdata = Loader.Cifar10Mono(batchsize, num_workers=0, shuffle=True)
|
traindata, testdata = Loader.Cifar10Mono(batchsize, num_workers=2, shuffle=True)
|
||||||
|
|
||||||
def ConvKernelToImage(model, layer, foldname):
|
|
||||||
if not os.path.exists(foldname):
|
|
||||||
os.mkdir(foldname)
|
|
||||||
a2 = model.features[layer].weight.data
|
|
||||||
a2 = a2.cpu().detach().numpy().reshape((-1, a2.shape[-2], a2.shape[-1]))
|
|
||||||
for i in range(a2.shape[0]):
|
|
||||||
d = a2[i]
|
|
||||||
dmin = np.min(d)
|
|
||||||
dmax = np.max(d)
|
|
||||||
d = (d - dmin)*255.0/(dmax-dmin)
|
|
||||||
d = d.astype(int)
|
|
||||||
cv2.imwrite(foldname+"/"+str(i)+".png", d)
|
|
||||||
|
|
||||||
def ConvKernelToImage(numpydate, foldname):
|
|
||||||
if not os.path.exists(foldname):
|
|
||||||
os.mkdir(foldname)
|
|
||||||
a2 = numpydate.reshape((-1, numpydate.shape[-2], numpydate.shape[-1]))
|
|
||||||
for i in range(a2.shape[0]):
|
|
||||||
d = a2[i]
|
|
||||||
dmin = np.min(d)
|
|
||||||
dmax = np.max(d)
|
|
||||||
d = (d - dmin)*255.0/(dmax-dmin)
|
|
||||||
d = d.astype(int)
|
|
||||||
cv2.imwrite(foldname+"/"+str(i)+".png", d)
|
|
||||||
|
|
||||||
|
|
||||||
def GetScore(netmodel,layer,SearchLayer,DataSet,Interation=-1):
|
def GetScore(netmodel,layer,SearchLayer,DataSet,Interation=-1):
|
||||||
|
@ -175,7 +151,7 @@ def TrainLayer(netmodel, layer, SearchLayer, DataSet, Epoch=100):
|
||||||
print(" epoch :" + str(e))
|
print(" epoch :" + str(e))
|
||||||
return SearchLayer.weight.data.cpu().detach().numpy()
|
return SearchLayer.weight.data.cpu().detach().numpy()
|
||||||
|
|
||||||
def UnsuperLearnTrainWeight(model, layer, dataloader, NumTrain=500, TrainChannelRatio=1, Epoch=100):
|
def UnsuperLearnTrainWeight(model, layer, dataloader, NumTrain=500, TrainChannelRatio=1, Epoch=20):
|
||||||
tl = model.features[layer]
|
tl = model.features[layer]
|
||||||
newlayer = nn.Conv2d(tl.in_channels, tl.out_channels * TrainChannelRatio, tl.kernel_size,
|
newlayer = nn.Conv2d(tl.in_channels, tl.out_channels * TrainChannelRatio, tl.kernel_size,
|
||||||
tl.stride, tl.padding, tl.dilation, tl.groups, tl.bias, tl.padding_mode)
|
tl.stride, tl.padding, tl.dilation, tl.groups, tl.bias, tl.padding_mode)
|
||||||
|
@ -203,6 +179,6 @@ np.save("WeightTrain.npy", weight)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
ConvKernelToImage(weight, CurrentPath+"image")
|
utils.NumpyToImage(weight, CurrentPath+"image")
|
||||||
# utils.SaveModel(model,CurrentPath+"/checkpoint.pkl")
|
# utils.SaveModel(model,CurrentPath+"/checkpoint.pkl")
|
||||||
print("save model sucess")
|
print("save model sucess")
|
||||||
|
|
|
@ -47,16 +47,24 @@ model = utils.LoadModel(model, CurrentPath+"/checkpoint.pkl")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# traindata, testdata = Loader.MNIST(batchsize)
|
# traindata, testdata = Loader.MNIST(batchsize)
|
||||||
# traindata, testdata = Loader.RandomMnist(batchsize, style="Vertical")
|
# traindata, testdata = Loader.RandomMnist(batchsize, style="Vertical")
|
||||||
# traindata, testdata = Loader.RandomMnist(batchsize, style="Horizontal")
|
# traindata, testdata = Loader.RandomMnist(batchsize, style="Horizontal")
|
||||||
# traindata, testdata = Loader.RandomMnist(batchsize, style="VerticalOneLine")
|
# traindata, testdata = Loader.RandomMnist(batchsize, style="VerticalOneLine")
|
||||||
# traindata, testdata = Loader.RandomMnist(batchsize, style="VerticalZebra")
|
# traindata, testdata = Loader.RandomMnist(batchsize, style="VerticalZebra")
|
||||||
# traindata, testdata = Loader.Cifar10Mono(batchsize)
|
# traindata, testdata = Loader.Cifar10Mono(batchsize)
|
||||||
traindata, testdata = Loader.Cifar10Mono(batchsize, num_workers=0, shuffle=True)
|
traindata, testdata = Loader.Cifar10Mono(batchsize, num_workers=2, shuffle=True)
|
||||||
|
|
||||||
|
|
||||||
def GetSample(netmodel,layer,SearchLayer,DataSet,Interation=-1):
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def GetScore(netmodel,layer,SearchLayer,DataSet,Interation=-1):
|
||||||
netmodel.eval()
|
netmodel.eval()
|
||||||
sample = utils.SetDevice(torch.empty((SearchLayer.out_channels,0)))
|
sample = utils.SetDevice(torch.empty((SearchLayer.out_channels,0)))
|
||||||
|
|
||||||
|
@ -92,21 +100,7 @@ def GetSample(netmodel,layer,SearchLayer,DataSet,Interation=-1):
|
||||||
dat2 = torch.mean(dat2 * dat2,dim=1)
|
dat2 = torch.mean(dat2 * dat2,dim=1)
|
||||||
return dat2.cpu().detach().numpy()
|
return dat2.cpu().detach().numpy()
|
||||||
|
|
||||||
def ConvKernelToImage(model, layer, foldname):
|
def UnsuperLearnSearchWeight(model, layer, dataloader, NumSearch=10000, SaveChannelRatio=500, SearchChannelRatio=1, Interation=10):
|
||||||
if not os.path.exists(foldname):
|
|
||||||
os.mkdir(foldname)
|
|
||||||
a2 = model.features[layer].weight.data
|
|
||||||
a2 = a2.cpu().detach().numpy().reshape((-1, a2.shape[-2], a2.shape[-1]))
|
|
||||||
for i in range(a2.shape[0]):
|
|
||||||
d = a2[i]
|
|
||||||
dmin = np.min(d)
|
|
||||||
dmax = np.max(d)
|
|
||||||
d = (d - dmin)*255.0/(dmax-dmin)
|
|
||||||
d = d.astype(int)
|
|
||||||
cv2.imwrite(foldname+"/"+str(i)+".png", d)
|
|
||||||
|
|
||||||
|
|
||||||
def UnsuperLearnConvWeight(model, layer, dataloader, NumSearch=10000, SaveChannelRatio=500, SearchChannelRatio=1, Interation=10):
|
|
||||||
tl = model.features[layer]
|
tl = model.features[layer]
|
||||||
newlayer = nn.Conv2d(tl.in_channels, tl.out_channels * SearchChannelRatio, tl.kernel_size,
|
newlayer = nn.Conv2d(tl.in_channels, tl.out_channels * SearchChannelRatio, tl.kernel_size,
|
||||||
tl.stride, tl.padding, tl.dilation, tl.groups, tl.bias, tl.padding_mode)
|
tl.stride, tl.padding, tl.dilation, tl.groups, tl.bias, tl.padding_mode)
|
||||||
|
@ -122,7 +116,7 @@ def UnsuperLearnConvWeight(model, layer, dataloader, NumSearch=10000, SaveChanne
|
||||||
newweight = np.random.uniform(-1.0,1.0,newweightshape).astype("float32")
|
newweight = np.random.uniform(-1.0,1.0,newweightshape).astype("float32")
|
||||||
newlayer.weight.data=utils.SetDevice(torch.from_numpy(newweight))
|
newlayer.weight.data=utils.SetDevice(torch.from_numpy(newweight))
|
||||||
|
|
||||||
score = GetSample(model, layer, newlayer, dataloader, Interation)
|
score = GetScore(model, layer, newlayer, dataloader, Interation)
|
||||||
|
|
||||||
minactive = np.append(minactive, score)
|
minactive = np.append(minactive, score)
|
||||||
minweight = np.concatenate((minweight, newweight))
|
minweight = np.concatenate((minweight, newweight))
|
||||||
|
@ -139,16 +133,77 @@ def UnsuperLearnConvWeight(model, layer, dataloader, NumSearch=10000, SaveChanne
|
||||||
return minweight
|
return minweight
|
||||||
|
|
||||||
|
|
||||||
weight = UnsuperLearnConvWeight(model, layer, traindata, NumSearch=100000, SearchChannelRatio=8, Interation=10)
|
def TrainLayer(netmodel, layer, SearchLayer, DataSet, Epoch=100):
|
||||||
np.save("weight.npy", weight)
|
netmodel.eval()
|
||||||
|
sample = utils.SetDevice(torch.empty((SearchLayer.out_channels,0)))
|
||||||
|
layer = layer-1
|
||||||
|
SearchLayer.weight.data.requires_grad=True
|
||||||
|
optimizer = optim.SGD(SearchLayer.parameters(), lr=0.1)
|
||||||
|
for e in range(Epoch):
|
||||||
|
for batch_idx, (data, target) in enumerate(DataSet):
|
||||||
|
optimizer.zero_grad()
|
||||||
|
data = utils.SetDevice(data)
|
||||||
|
target = utils.SetDevice(target)
|
||||||
|
output = netmodel.ForwardLayer(data,layer)
|
||||||
|
output = SearchLayer(output)
|
||||||
|
sample = torch.reshape(output.transpose(0,1),(SearchLayer.out_channels,-1))
|
||||||
|
sample_mean=torch.mean(sample,dim=1,keepdim=True)
|
||||||
|
dat1 = torch.mean(torch.abs(sample - sample_mean),dim=1,keepdim=True)
|
||||||
|
dat2 = (sample - sample_mean)/dat1
|
||||||
|
dat2 = torch.mean(dat2 * dat2,dim=1)
|
||||||
|
label = dat2*0.5
|
||||||
|
loss = F.l1_loss(dat2, label)
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
print(" epoch :" + str(e))
|
||||||
|
return SearchLayer.weight.data.cpu().detach().numpy()
|
||||||
|
|
||||||
ConvKernelToImage(model, layer, CurrentPath+"image")
|
def UnsuperLearnTrainWeight(model, layer, dataloader, NumTrain=500, TrainChannelRatio=1, Epoch=20):
|
||||||
utils.SaveModel(model,CurrentPath+"/checkpoint.pkl")
|
tl = model.features[layer]
|
||||||
|
newlayer = nn.Conv2d(tl.in_channels, tl.out_channels * TrainChannelRatio, tl.kernel_size,
|
||||||
|
tl.stride, tl.padding, tl.dilation, tl.groups, tl.bias, tl.padding_mode)
|
||||||
|
newlayer = utils.SetDevice(newlayer)
|
||||||
|
newweightshape = list(newlayer.weight.data.shape)
|
||||||
|
minactive = np.empty((0))
|
||||||
|
minweight = np.empty([0,newweightshape[1],newweightshape[2],newweightshape[3]])
|
||||||
|
for i in range(NumTrain):
|
||||||
|
newweight = np.random.uniform(-1.0,1.0,newweightshape).astype("float32")
|
||||||
|
newlayer.weight.data=utils.SetDevice(torch.from_numpy(newweight))
|
||||||
|
newweight = TrainLayer(model, layer, newlayer, dataloader, Epoch)
|
||||||
|
minweight = np.concatenate((minweight, newweight))
|
||||||
|
print("search :" + str(i))
|
||||||
|
return minweight
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
weight = np.load(CurrentPath+"WeightSearch.npy")
|
||||||
|
# weight = np.zeros((990,3,3));
|
||||||
|
# weight[:,1]=100
|
||||||
|
# weight[:,:,1]=100
|
||||||
|
utils.NumpyToImage(weight,CurrentPath+"image")
|
||||||
|
|
||||||
|
a=0
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# weight = UnsuperLearnSearchWeight(model, layer, traindata, NumSearch=100000, SearchChannelRatio=8, Interation=10)
|
||||||
|
# np.save("WeightSearch.npy", weight)
|
||||||
|
|
||||||
|
weight = UnsuperLearnTrainWeight(model, layer, traindata)
|
||||||
|
np.save("WeightTrain.npy", weight)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
ConvKernelToImage(weight, CurrentPath+"image")
|
||||||
|
# utils.SaveModel(model,CurrentPath+"/checkpoint.pkl")
|
||||||
print("save model sucess")
|
print("save model sucess")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
weight = np.load("weight.npy")
|
|
||||||
|
|
|
@ -1,153 +0,0 @@
|
||||||
from __future__ import print_function
|
|
||||||
import os
|
|
||||||
import sys
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
import torch.nn.functional as F
|
|
||||||
import torch.optim as optim
|
|
||||||
import torchvision
|
|
||||||
from torchvision import datasets, transforms
|
|
||||||
import torchvision.models as models
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import numpy as np
|
|
||||||
from torch.utils.data import Dataset, DataLoader
|
|
||||||
from PIL import Image
|
|
||||||
import random
|
|
||||||
import cv2
|
|
||||||
|
|
||||||
|
|
||||||
CurrentPath = os.path.split(os.path.realpath(__file__))[0]+"/"
|
|
||||||
print("Current Path :" + CurrentPath)
|
|
||||||
|
|
||||||
sys.path.append(CurrentPath+'../tools')
|
|
||||||
sys.path.append(CurrentPath+'../')
|
|
||||||
|
|
||||||
import Model as Model
|
|
||||||
from tools import utils, Train, Loader
|
|
||||||
|
|
||||||
batchsize = 128
|
|
||||||
|
|
||||||
|
|
||||||
# model = utils.SetDevice(Model.Net5Grad35())
|
|
||||||
# model = utils.SetDevice(Model.Net31535())
|
|
||||||
model = utils.SetDevice(Model.Net3Grad335())
|
|
||||||
# model = utils.SetDevice(Model.Net3())
|
|
||||||
|
|
||||||
|
|
||||||
layers = model.PrintLayer()
|
|
||||||
layer = 0
|
|
||||||
|
|
||||||
model = utils.LoadModel(model, CurrentPath+"/checkpoint.pkl")
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# traindata, testdata = Loader.MNIST(batchsize)
|
|
||||||
# traindata, testdata = Loader.RandomMnist(batchsize, style="Vertical")
|
|
||||||
# traindata, testdata = Loader.RandomMnist(batchsize, style="Horizontal")
|
|
||||||
# traindata, testdata = Loader.RandomMnist(batchsize, style="VerticalOneLine")
|
|
||||||
# traindata, testdata = Loader.RandomMnist(batchsize, style="VerticalZebra")
|
|
||||||
# traindata, testdata = Loader.Cifar10Mono(batchsize)
|
|
||||||
traindata, testdata = Loader.Cifar10Mono(batchsize, num_workers=0, shuffle=True)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# k = np.ones((3,3)).astype("float32")*1.0
|
|
||||||
# d = np.ones((3,3)).astype("float32")*3.0
|
|
||||||
# l = np.ones((3,3)).astype("float32")*3.5
|
|
||||||
|
|
||||||
# k = torch.from_numpy(k)
|
|
||||||
# d = torch.from_numpy(d)
|
|
||||||
# l = torch.from_numpy(l)
|
|
||||||
|
|
||||||
# k.requires_grad=True
|
|
||||||
|
|
||||||
# optimizer = optim.SGD([k], lr=0.1)
|
|
||||||
# optimizer.zero_grad()
|
|
||||||
|
|
||||||
|
|
||||||
# output = k + d
|
|
||||||
|
|
||||||
# loss = F.l1_loss(output, l)
|
|
||||||
# loss.backward()
|
|
||||||
# optimizer.step()
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def ConvKernelToImage(numpydate, foldname):
|
|
||||||
if not os.path.exists(foldname):
|
|
||||||
os.mkdir(foldname)
|
|
||||||
a2 = numpydate.reshape((-1, numpydate.shape[-2], numpydate.shape[-1]))
|
|
||||||
for i in range(a2.shape[0]):
|
|
||||||
d = a2[i]
|
|
||||||
dmin = np.min(d)
|
|
||||||
dmax = np.max(d)
|
|
||||||
d = (d - dmin)*255.0/(dmax-dmin)
|
|
||||||
d = d.astype(int)
|
|
||||||
cv2.imwrite(foldname+"/"+str(i)+".png", d)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def TrainLayer(netmodel, layer, SearchLayer, DataSet, Epoch=100):
|
|
||||||
netmodel.eval()
|
|
||||||
sample = utils.SetDevice(torch.empty((SearchLayer.out_channels,0)))
|
|
||||||
layer = layer-1
|
|
||||||
SearchLayer.weight.data.requires_grad=True
|
|
||||||
optimizer = optim.SGD(SearchLayer.parameters(), lr=0.1)
|
|
||||||
for e in range(Epoch):
|
|
||||||
for batch_idx, (data, target) in enumerate(DataSet):
|
|
||||||
optimizer.zero_grad()
|
|
||||||
data = utils.SetDevice(data)
|
|
||||||
target = utils.SetDevice(target)
|
|
||||||
output = netmodel.ForwardLayer(data,layer)
|
|
||||||
output = SearchLayer(output)
|
|
||||||
sample = torch.reshape(output.transpose(0,1),(SearchLayer.out_channels,-1))
|
|
||||||
sample_mean=torch.mean(sample,dim=1,keepdim=True)
|
|
||||||
dat1 = torch.mean(torch.abs(sample - sample_mean),dim=1,keepdim=True)
|
|
||||||
dat2 = (sample - sample_mean)/dat1
|
|
||||||
dat2 = torch.mean(dat2 * dat2,dim=1)
|
|
||||||
label = dat2*0.5
|
|
||||||
loss = F.l1_loss(dat2, label)
|
|
||||||
loss.backward()
|
|
||||||
optimizer.step()
|
|
||||||
print(" epoch :" + str(e))
|
|
||||||
return SearchLayer.weight.data.cpu().detach().numpy()
|
|
||||||
|
|
||||||
def UnsuperLearnTrainWeight(model, layer, dataloader, NumTrain=500, TrainChannelRatio=1, Epoch=100):
|
|
||||||
tl = model.features[layer]
|
|
||||||
newlayer = nn.Conv2d(tl.in_channels, tl.out_channels * TrainChannelRatio, tl.kernel_size,
|
|
||||||
tl.stride, tl.padding, tl.dilation, tl.groups, tl.bias, tl.padding_mode)
|
|
||||||
newlayer = utils.SetDevice(newlayer)
|
|
||||||
|
|
||||||
newweightshape = list(newlayer.weight.data.shape)
|
|
||||||
|
|
||||||
minactive = np.empty((0))
|
|
||||||
minweight = np.empty([0,newweightshape[1],newweightshape[2],newweightshape[3]])
|
|
||||||
for i in range(NumTrain):
|
|
||||||
newweight = np.random.uniform(-1.0,1.0,newweightshape).astype("float32")
|
|
||||||
newlayer.weight.data=utils.SetDevice(torch.from_numpy(newweight))
|
|
||||||
newweight = TrainLayer(model, layer, newlayer, dataloader, 5)
|
|
||||||
minweight = np.concatenate((minweight, newweight))
|
|
||||||
|
|
||||||
ConvKernelToImage(minweight, CurrentPath+"image")
|
|
||||||
|
|
||||||
print("search :" + str(i))
|
|
||||||
|
|
||||||
return minweight
|
|
||||||
|
|
||||||
|
|
||||||
weight = UnsuperLearnTrainWeight(model, layer, traindata)
|
|
||||||
np.save("WeightTrain.npy", weight)
|
|
||||||
|
|
||||||
# ConvKernelToImage(model, layer, CurrentPath+"image")
|
|
||||||
# utils.SaveModel(model,CurrentPath+"/checkpoint.pkl")
|
|
||||||
print("save model sucess")
|
|
Binary file not shown.
Binary file not shown.
After Width: | Height: | Size: 12 KiB |
Binary file not shown.
After Width: | Height: | Size: 12 KiB |
Binary file not shown.
After Width: | Height: | Size: 12 KiB |
Binary file not shown.
After Width: | Height: | Size: 11 KiB |
|
@ -149,3 +149,43 @@ def SetCUDAVISIBLEDEVICES(deviceid):
|
||||||
print("Use GPU IDs :" + str(tuple(deviceid))[1:-1])
|
print("Use GPU IDs :" + str(tuple(deviceid))[1:-1])
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def ConvKernelToImage(model, layer, foldname):
|
||||||
|
if not os.path.exists(foldname):
|
||||||
|
os.mkdir(foldname)
|
||||||
|
a2 = model.features[layer].weight.data
|
||||||
|
a2 = a2.cpu().detach().numpy().reshape((-1, a2.shape[-2], a2.shape[-1]))
|
||||||
|
for i in range(a2.shape[0]):
|
||||||
|
d = a2[i]
|
||||||
|
dmin = np.min(d)
|
||||||
|
dmax = np.max(d)
|
||||||
|
d = (d - dmin)*255.0/(dmax-dmin)
|
||||||
|
d = d.astype(int)
|
||||||
|
cv2.imwrite(foldname+"/"+str(i)+".png", d)
|
||||||
|
|
||||||
|
def NumpyToImage(numpydate, foldname ,maxImageWidth = 128,maxImageHeight = 128):
|
||||||
|
if not os.path.exists(foldname):
|
||||||
|
os.mkdir(foldname)
|
||||||
|
numpydatemin = np.min(numpydate)
|
||||||
|
numpydatemax = np.max(numpydate)
|
||||||
|
numpydate = (numpydate - numpydatemin)*255.0/(numpydatemax-numpydatemin)
|
||||||
|
data = numpydate.reshape((-1, numpydate.shape[-2], numpydate.shape[-1]))
|
||||||
|
datashape = data.shape
|
||||||
|
|
||||||
|
newdata = np.ones((datashape[0],datashape[1]+1,datashape[2]+1))*numpydatemin
|
||||||
|
newdata[:, 0:datashape[1], 0:datashape[2]]=data
|
||||||
|
datashape = newdata.shape
|
||||||
|
|
||||||
|
imagecols = int(maxImageWidth/datashape[2])
|
||||||
|
imagerows = int(maxImageHeight/datashape[1])
|
||||||
|
stepimages = imagecols*imagerows
|
||||||
|
for i in range(0,datashape[0],stepimages):
|
||||||
|
d = np.zeros((stepimages,datashape[1],datashape[2]))
|
||||||
|
left = newdata[i:min(i+stepimages,datashape[0])]
|
||||||
|
d[0:left.shape[0]]=left
|
||||||
|
d=np.reshape(d, (imagerows, imagecols, datashape[1], datashape[2]))
|
||||||
|
d=np.swapaxes(d, 1, 2)
|
||||||
|
d=np.reshape(d, (imagerows*datashape[1],imagecols*datashape[2]))
|
||||||
|
d = d.astype(int)
|
||||||
|
cv2.imwrite(foldname+"/"+str(i)+"-"+str(i+stepimages)+".png", d)
|
||||||
|
|
Loading…
Reference in New Issue