add minactive return in search

This commit is contained in:
colin 2019-10-03 16:30:52 +08:00
parent 130a6942b9
commit 9628b2c17e
17 changed files with 24 additions and 14 deletions

1
.gitignore vendored
View File

@ -7,3 +7,4 @@ Dataset/
.vscode
/*/__pycache__
.mypy_cache
/FilterEvaluator/image*

View File

@ -51,7 +51,7 @@ layer = 0
# traindata, testdata = Loader.RandomMnist(batchsize, style="VerticalOneLine")
# traindata, testdata = Loader.RandomMnist(batchsize, style="VerticalZebra")
# traindata, testdata = Loader.Cifar10Mono(batchsize)
traindata, testdata = Loader.Cifar10Mono(batchsize, num_workers=0, shuffle=True)
traindata, testdata = Loader.Cifar10Mono(batchsize, num_workers=0, shuffle=False)
@ -71,17 +71,31 @@ traindata, testdata = Loader.Cifar10Mono(batchsize, num_workers=0, shuffle=True)
for batch_idx, (data, target) in enumerate(traindata):
utils.NumpyToImage(data.cpu().detach().numpy(), CurrentPath+"image", title="TrainData")
break
# weight = EvaluatorUnsuper.UnsuperLearnSearchWeight(model, layer, traindata, NumSearch=100000, SearchChannelRatio=32, Interation=10)
# np.save("WeightSearch.npy", weight)
weight = np.load(CurrentPath+"WeightSearch.npy")
weight,active = EvaluatorUnsuper.UnsuperLearnSearchWeight(model, layer, traindata, NumSearch=1,SaveChannel=8,SearchChannelRatio=1, Interation=128)
utils.NumpyToImage(weight, CurrentPath+"image",title="SearchWeight")
b =0
# weight,active = EvaluatorUnsuper.UnsuperLearnSearchWeight(model, layer, traindata, NumSearch=100000, SearchChannelRatio=32, Interation=10)
# np.save("WeightSearch.npy", weight)
# weight = np.load(CurrentPath+"WeightSearch.npy")
# utils.NumpyToImage(weight, CurrentPath+"image",title="SearchWeight")
# weight = np.load(CurrentPath+"WeightSearch.npy")
# bestweight,index = EvaluatorUnsuper.UnsuperLearnFindBestWeight(model,layer,weight,traindata,128,100000)
# np.save(CurrentPath+"bestweightSearch.npy", bestweight)
# bestweight = np.load(CurrentPath+"bestweightSearch.npy")
# utils.NumpyToImage(bestweight, CurrentPath+"image")
# utils.NumpyToImage(bestweight, CurrentPath+"image",title="SearchWerightBest")
# EvaluatorUnsuper.SetModelConvWeight(model,layer,bestweight)
# utils.SaveModel(model,CurrentPath+"/checkpointSearch.pkl")
@ -90,12 +104,12 @@ utils.NumpyToImage(weight, CurrentPath+"image",title="SearchWeight")
# weight = EvaluatorUnsuper.UnsuperLearnTrainWeight(model, layer, traindata, NumTrain=5000)
# np.save("WeightTrain.npy", weight)
# utils.NumpyToImage(bestweight, CurrentPath+"image",title="TrainWeight")
# weight = np.load(CurrentPath+"WeightTrain.npy")
# utils.NumpyToImage(weight, CurrentPath+"image",title="TrainWeight")
# bestweight, index = EvaluatorUnsuper.UnsuperLearnFindBestWeight(model, layer, weight, traindata, databatchs=64, interation=1000000)
# np.save(CurrentPath+"bestweightTrain.npy", bestweight)
# bestweight = np.load(CurrentPath+"bestweightTrain.npy")
# utils.NumpyToImage(bestweight, CurrentPath+"image")
# utils.NumpyToImage(bestweight, CurrentPath+"image",title="TrainWerightBest")
# EvaluatorUnsuper.SetModelConvWeight(model,layer,bestweight)
# utils.SaveModel(model,CurrentPath+"/checkpointTrain.pkl")

View File

@ -66,8 +66,6 @@ def UnsuperLearnSearchWeight(model, layer, dataloader, NumSearch=10000, SaveChan
for i in range(NumSearch):
newlayer.weight.data=utils.SetDevice(torch.from_numpy(newweight[i]))
output = model.ForwardLayer(dataset,layer-1)
output = newlayer(output)
output = torch.reshape(output.transpose(0,1),(newlayer.out_channels,-1))
@ -78,11 +76,8 @@ def UnsuperLearnSearchWeight(model, layer, dataloader, NumSearch=10000, SaveChan
dat2 = torch.mean(dat2 * dat2,dim=1)
score = dat2.cpu().detach().numpy()
# score = GetScore(model, layer, newlayer, dataset)
minactive = np.append(minactive, score)
minweight = np.concatenate((minweight, newweight[i]))
index = minactive.argsort()
minactive = minactive[index[0:SaveChannel]]
minweight = minweight[index[0:SaveChannel]]
@ -93,7 +88,7 @@ def UnsuperLearnSearchWeight(model, layer, dataloader, NumSearch=10000, SaveChan
tl.data=utils.SetDevice(torch.from_numpy(minweight[0:tl.out_channels]))
interationbar.close()
return minweight
return minweight, minactive
def TrainLayer(netmodel, layer, SearchLayer, DataSet, Epoch=100):
netmodel.eval()

Binary file not shown.

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 409 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 12 KiB

After

Width:  |  Height:  |  Size: 286 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 273 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 273 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 11 KiB