TIM-VX/src/tim/vx/ops/depthwiseConv_test.cc

1376 lines
53 KiB
C++
Raw Normal View History

#include "gtest/gtest.h"
#include "test_utils.h"
#include "tim/vx/context.h"
#include "tim/vx/graph.h"
#include "tim/vx/ops/conv2d.h"
#include "tim/vx/types.h"
TEST(DepthwiseConv, shape_2_3_2_1_float32_SimpleTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({2, 3, 2, 1}); //whcn
tim::vx::ShapeType weight_shape({2, 2, 4, 1}); //whoi
tim::vx::ShapeType bias_shape({weight_shape[2]});
tim::vx::ShapeType output_shape(
{1, 2, weight_shape[2], input_shape[3]}); //whcn
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
tim::vx::TensorAttribute::OUTPUT);
// Input data nchw
std::vector<float> input_data = {1, 7, 3, 9, 5, 11, 2, 8, 4, 10, 6, 12};
// weight data iohw
std::vector<float> weight_data = {1, -9, 5, 13, 2, 10, 6, -14,
3, -11, 7, 15, 4, 12, 8, -16};
// bias data
std::vector<float> bias_data = {1, 2, 3, 4};
// nchw
std::vector<float> golden = {71, 91, -34, -26, 99, 127, -20, -4};
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
auto padding = tim::vx::PadType::VALID;
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({1, 1});
int32_t multiplier = weight_shape[2] / input_shape[2];
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
padding, stride, dilation, multiplier);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<float> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(DepthwiseConv, shape_2_3_2_1_float32_StrideValidTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({2, 3, 2, 1}); //whcn
tim::vx::ShapeType weight_shape({2, 2, 4, 1}); //whoi
tim::vx::ShapeType bias_shape({weight_shape[2]});
tim::vx::ShapeType output_shape(
{1, 1, weight_shape[2], input_shape[3]}); //whcn
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
tim::vx::TensorAttribute::OUTPUT);
// Input data nchw
std::vector<float> input_data = {1, 7, 3, 9, 5, 11, 2, 8, 4, 10, 6, 12};
// weight data iohw
std::vector<float> weight_data = {1, -9, 5, 13, 2, 10, 6, -14,
3, -11, 7, 15, 4, 12, 8, -16};
// bias data
std::vector<float> bias_data = {1, 2, 3, 4};
// nchw
std::vector<float> golden = {71, -34, 99, -20};
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
auto padding = tim::vx::PadType::VALID;
std::array<uint32_t, 2> stride({2, 2});
std::array<uint32_t, 2> dilation({1, 1});
int32_t multiplier = weight_shape[2] / input_shape[2];
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
padding, stride, dilation, multiplier);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<float> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(DepthwiseConv, shape_2_3_2_1_float32_StrideSameTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({2, 3, 2, 1}); //whcn
tim::vx::ShapeType weight_shape({2, 2, 4, 1}); //whoi
tim::vx::ShapeType bias_shape({weight_shape[2]});
tim::vx::ShapeType output_shape(
{1, 2, weight_shape[2], input_shape[3]}); //whcn
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
tim::vx::TensorAttribute::OUTPUT);
// Input data nchw
std::vector<float> input_data = {1, 7, 3, 9, 5, 11, 2, 8, 4, 10, 6, 12};
// weight data iohw
std::vector<float> weight_data = {1, -9, 5, 13, 2, 10, 6, -14,
3, -11, 7, 15, 4, 12, 8, -16};
// bias data
std::vector<float> bias_data = {1, 2, 3, 4};
// nchw
std::vector<float> golden = {71, -93, -34, 122, 99, -111, -20, 172};
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
auto padding = tim::vx::PadType::SAME;
std::array<uint32_t, 2> stride({2, 2});
std::array<uint32_t, 2> dilation({1, 1});
int32_t multiplier = weight_shape[2] / input_shape[2];
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
padding, stride, dilation, multiplier);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<float> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(DepthwiseConv, shape_2_3_2_1_float32_StrideSameDilationTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({2, 3, 2, 1}); //whcn
tim::vx::ShapeType weight_shape({2, 2, 4, 1}); //whoi
tim::vx::ShapeType bias_shape({weight_shape[2]});
tim::vx::ShapeType output_shape(
{1, 2, weight_shape[2], input_shape[3]}); //whcn
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
tim::vx::TensorAttribute::OUTPUT);
// Input data nchw
std::vector<float> input_data = {1, 7, 3, 9, 5, 11, 2, 8, 4, 10, 6, 12};
// weight data iohw
std::vector<float> weight_data = {1, -9, 5, 13, 2, 10, 6, -14,
3, -11, 7, 15, 4, 12, 8, -16};
// bias data
std::vector<float> bias_data = {1, 2, 3, 4};
// nchw
std::vector<float> golden = {1, 1, 2, 2, 3, 3, 4, 4};
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
auto padding = tim::vx::PadType::SAME;
std::array<uint32_t, 2> stride({2, 2});
std::array<uint32_t, 2> dilation({10, 10});
int32_t multiplier = weight_shape[2] / input_shape[2];
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
padding, stride, dilation, multiplier);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<float> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(DepthwiseConv, shape_2_3_2_1_float32_PaddingTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({2, 3, 2, 1}); //whcn
tim::vx::ShapeType weight_shape({2, 2, 4, 1}); //whoi
tim::vx::ShapeType bias_shape({weight_shape[2]});
tim::vx::ShapeType output_shape(
{1, 1, weight_shape[2], input_shape[3]}); //whcn
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
tim::vx::TensorAttribute::OUTPUT);
// Input data nchw
std::vector<float> input_data = {1, 7, 3, 9, 5, 11, 2, 8, 4, 10, 6, 12};
// weight data iohw
std::vector<float> weight_data = {1, -9, 5, 13, 2, 10, 6, -14,
3, -11, 7, 15, 4, 12, 8, -16};
// bias data
std::vector<float> bias_data = {1, 2, 3, 4};
// nchw
std::vector<float> golden = {71, -34, 99, -20};
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
auto padding = tim::vx::PadType::SAME;
std::array<uint32_t, 2> stride({2, 2});
std::array<uint32_t, 2> dilation({1, 1});
int32_t multiplier = weight_shape[2] / input_shape[2];
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
padding, stride, dilation, multiplier);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<float> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(DepthwiseConv, shape_9_9_1_1_float32_DilationValidTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({9, 9, 1, 1}); //whcn
tim::vx::ShapeType weight_shape({3, 3, 1, 1}); //whoi
tim::vx::ShapeType bias_shape({weight_shape[2]});
tim::vx::ShapeType output_shape(
{3, 3, weight_shape[2], input_shape[3]}); //whcn
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
tim::vx::TensorAttribute::OUTPUT);
// Input data nchw
std::vector<float> input_data = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1,
0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
// weight data iohw
std::vector<float> weight_data = {1, 2, 3, 4, 5, 6, 7, 8, 9};
// bias data
std::vector<float> bias_data = {0};
// nchw
std::vector<float> golden = {5, 5, 5, 5, 5, 5, 5, 5, 5};
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
auto padding = tim::vx::PadType::VALID;
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({3, 3});
int32_t multiplier = weight_shape[2] / input_shape[2];
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
padding, stride, dilation, multiplier);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<float> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(DepthwiseConv, shape_3_3_1_1_float32_DilationSameTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({3, 3, 1, 1}); //whcn
tim::vx::ShapeType weight_shape({2, 2, 1, 1}); //whoi
tim::vx::ShapeType bias_shape({weight_shape[2]});
tim::vx::ShapeType output_shape(
{3, 3, weight_shape[2], input_shape[3]}); //whcn
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
tim::vx::TensorAttribute::OUTPUT);
// Input data nchw
std::vector<float> input_data = {1, 1, 1, 1, 1, 1, 1, 1, 1};
// weight data iohw
std::vector<float> weight_data = {1, 2, 3, 4};
// bias data
std::vector<float> bias_data = {0};
// nchw
std::vector<float> golden = {4, 7, 3, 6, 10, 4, 2, 3, 1};
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
auto padding = tim::vx::PadType::SAME;
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({2, 2});
int32_t multiplier = weight_shape[2] / input_shape[2];
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
padding, stride, dilation, multiplier);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<float> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(DepthwiseConv, shape_3_3_4_2_float32_BatchValidTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({3, 3, 4, 2}); //whcn
tim::vx::ShapeType weight_shape({3, 3, 4, 1}); //whoi
tim::vx::ShapeType bias_shape({weight_shape[2]});
tim::vx::ShapeType output_shape(
{1, 1, weight_shape[2], input_shape[3]}); //whcn
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
tim::vx::TensorAttribute::OUTPUT);
// Input data nchw
std::vector<float> input_data = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
// weight data iohw
std::vector<float> weight_data = {1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3,
3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4};
// bias data
std::vector<float> bias_data = {0, 0, 0, 0};
// nchw
std::vector<float> golden = {9, 18, 0, 0, 9, 18, 0, 0};
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
auto padding = tim::vx::PadType::VALID;
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({1, 1});
int32_t multiplier = weight_shape[2] / input_shape[2];
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
padding, stride, dilation, multiplier);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<float> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(DepthwiseConv, shape_2_2_1_4_float32_BatchSameTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({2, 2, 1, 4}); //whcn
tim::vx::ShapeType weight_shape({3, 3, 1, 1}); //whoi
tim::vx::ShapeType bias_shape({weight_shape[2]});
tim::vx::ShapeType output_shape(
{2, 2, weight_shape[2], input_shape[3]}); //whcn
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32, input_shape,
tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::FLOAT32, weight_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::FLOAT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32, output_shape,
tim::vx::TensorAttribute::OUTPUT);
// Input data nchw
std::vector<float> input_data = {1, 1, 1, 1, 0, 0, 0, 0,
1, 1, 2, 2, 2, 2, 2, 2};
// weight data iohw
std::vector<float> weight_data = {1, 1, 1, 0, 2, 0, 1, 1, 1};
// bias data
std::vector<float> bias_data = {0};
// nchw
std::vector<float> golden = {4, 4, 4, 4, 0, 0, 0, 0, 6, 6, 6, 6, 8, 8, 8, 8};
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
auto padding = tim::vx::PadType::SAME;
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({1, 1});
int32_t multiplier = weight_shape[2] / input_shape[2];
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
padding, stride, dilation, multiplier);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<float> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(DepthwiseConv, shape_2_3_2_1_uint8_QuantizedTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({2, 3, 2, 1}); //whcn
tim::vx::ShapeType weight_shape({2, 2, 4, 1}); //whoi
tim::vx::ShapeType bias_shape({weight_shape[2]});
tim::vx::ShapeType output_shape(
{1, 2, weight_shape[2], input_shape[3]}); //whcn
float input_min = -63.5, input_max = 64, weight_min = -63.5, weight_max = 64,
output_min = -127, output_max = 128;
std::pair<float, int32_t> scales_zp;
scales_zp = QuantizationParams<u_int8_t>(input_min, input_max);
std::vector<float> scales_input = {scales_zp.first};
std::vector<int32_t> zero_point_input = {scales_zp.second};
scales_zp = QuantizationParams<u_int8_t>(weight_min, weight_max);
std::vector<float> scales_weight = {scales_zp.first};
std::vector<int32_t> zero_point_weight = {scales_zp.second};
std::vector<float> scales_bias = {scales_input[0] * scales_weight[0]};
std::vector<int32_t> zero_point_bias = {0};
scales_zp = QuantizationParams<u_int8_t>(output_min, output_max);
std::vector<float> scales_output = {scales_zp.first};
std::vector<int32_t> zero_point_output = {scales_zp.second};
tim::vx::Quantization quant_input(tim::vx::QuantType::ASYMMETRIC, 2,
scales_input, zero_point_input);
tim::vx::Quantization quant_weight(tim::vx::QuantType::ASYMMETRIC, 2,
scales_weight, zero_point_weight);
tim::vx::Quantization quant_bias(tim::vx::QuantType::ASYMMETRIC, 2, scales_bias,
zero_point_bias);
tim::vx::Quantization quant_output(tim::vx::QuantType::ASYMMETRIC, 2,
scales_output, zero_point_output);
tim::vx::TensorSpec input_spec(tim::vx::DataType::UINT8, input_shape,
tim::vx::TensorAttribute::INPUT, quant_input);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::UINT8, weight_shape,
tim::vx::TensorAttribute::CONSTANT,
quant_weight);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::INT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT, quant_bias);
tim::vx::TensorSpec output_spec(tim::vx::DataType::UINT8, output_shape,
tim::vx::TensorAttribute::OUTPUT,
quant_output);
// Input data nchw
// min:-63.5 max:64 scale:0.5 Zp:-1
std::vector<float> input_data_float = {1, 7, 3, 9, 5, 11, 2, 8, 4, 10, 6, 12};
std::vector<uint8_t> input_data =
Quantize<uint8_t>(input_data_float, scales_input[0], zero_point_input[0]);
// weight data iohw
// min:-63.5 max:64 scale:0.5 Zp:-1
std::vector<float> weight_data_float = {1, -9, 5, 13, 2, 10, 6, -14,
3, -11, 7, 15, 4, 12, 8, -16};
std::vector<uint8_t> weight_data =
Quantize<uint8_t>(weight_data_float, scales_weight[0], zero_point_input[0]);
// bias data
// scale:0.25 Zp:0
std::vector<float> bias_data_float = {1, 2, 3, 4};
std::vector<int32_t> bias_data =
Quantize<int32_t>(bias_data_float, scales_bias[0], zero_point_bias[0]);
// golden
// min:-127 max:128 scale:1 Zp:-1
std::vector<float> golden_float = {71, 91, -34, -26, 99, 127, -20, -4};
std::vector<u_int8_t> golden =
Quantize<uint8_t>(golden_float, scales_output[0], zero_point_output[0]);
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
auto padding = tim::vx::PadType::VALID;
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({1, 1});
int32_t multiplier = weight_shape[2] / input_shape[2];
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
padding, stride, dilation, multiplier);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<uint8_t> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(DepthwiseConv, shape_9_9_1_1_uint8_QuantizedDilationdValidTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({9, 9, 1, 1}); //whcn
tim::vx::ShapeType weight_shape({3, 3, 1, 1}); //whoi
tim::vx::ShapeType bias_shape({weight_shape[2]});
tim::vx::ShapeType output_shape(
{3, 3, weight_shape[2], input_shape[3]}); //whcn
float input_min = 0, input_max = 255, weight_min = 0, weight_max = 255,
output_min = 0, output_max = 255;
std::pair<float, int32_t> scales_zp;
scales_zp = QuantizationParams<u_int8_t>(input_min, input_max);
std::vector<float> scales_input = {scales_zp.first};
std::vector<int32_t> zero_point_input = {scales_zp.second};
scales_zp = QuantizationParams<u_int8_t>(weight_min, weight_max);
std::vector<float> scales_weight = {scales_zp.first};
std::vector<int32_t> zero_point_weight = {scales_zp.second};
std::vector<float> scales_bias = {scales_input[0] * scales_weight[0]};
std::vector<int32_t> zero_point_bias = {0};
scales_zp = QuantizationParams<u_int8_t>(output_min, output_max);
std::vector<float> scales_output = {scales_zp.first};
std::vector<int32_t> zero_point_output = {scales_zp.second};
tim::vx::Quantization quant_input(tim::vx::QuantType::ASYMMETRIC, 2,
scales_input, zero_point_input);
tim::vx::Quantization quant_weight(tim::vx::QuantType::ASYMMETRIC, 2,
scales_weight, zero_point_weight);
tim::vx::Quantization quant_bias(tim::vx::QuantType::ASYMMETRIC, 2, scales_bias,
zero_point_bias);
tim::vx::Quantization quant_output(tim::vx::QuantType::ASYMMETRIC, 2,
scales_output, zero_point_output);
tim::vx::TensorSpec input_spec(tim::vx::DataType::UINT8, input_shape,
tim::vx::TensorAttribute::INPUT, quant_input);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::UINT8, weight_shape,
tim::vx::TensorAttribute::CONSTANT,
quant_weight);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::INT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT, quant_bias);
tim::vx::TensorSpec output_spec(tim::vx::DataType::UINT8, output_shape,
tim::vx::TensorAttribute::OUTPUT,
quant_output);
// Input data nchw
// min:0 max:255 scale:1 Zp:-128
std::vector<float> input_data_float = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1,
0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
std::vector<uint8_t> input_data =
Quantize<uint8_t>(input_data_float, scales_input[0], zero_point_input[0]);
// weight data iohw
// min:0 max:255 scale:1 Zp:-128
std::vector<float> weight_data_float = {1, 2, 3, 4, 5, 6, 7, 8, 9};
std::vector<uint8_t> weight_data =
Quantize<uint8_t>(weight_data_float, scales_weight[0], zero_point_input[0]);
// bias data
// scale:1 Zp:0
std::vector<float> bias_data_float = {0};
std::vector<int32_t> bias_data =
Quantize<int32_t>(bias_data_float, scales_bias[0], zero_point_bias[0]);
// golden
// min:0 max:255 scale:1 Zp:-128
std::vector<float> golden_float = {5, 5, 5, 5, 5, 5, 5, 5, 5};
std::vector<u_int8_t> golden =
Quantize<uint8_t>(golden_float, scales_output[0], zero_point_output[0]);
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
auto padding = tim::vx::PadType::VALID;
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({3, 3});
int32_t multiplier = weight_shape[2] / input_shape[2];
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
padding, stride, dilation, multiplier);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<uint8_t> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(DepthwiseConv, shape_3_3_1_1_uint8_QuantizedDilationdSameTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({3, 3, 1, 1}); //whcn
tim::vx::ShapeType weight_shape({2, 2, 1, 1}); //whoi
tim::vx::ShapeType bias_shape({weight_shape[2]});
tim::vx::ShapeType output_shape(
{3, 3, weight_shape[2], input_shape[3]}); //whcn
float input_min = 0, input_max = 255, weight_min = 0, weight_max = 255,
output_min = 0, output_max = 255;
std::pair<float, int32_t> scales_zp;
scales_zp = QuantizationParams<u_int8_t>(input_min, input_max);
std::vector<float> scales_input = {scales_zp.first};
std::vector<int32_t> zero_point_input = {scales_zp.second};
scales_zp = QuantizationParams<u_int8_t>(weight_min, weight_max);
std::vector<float> scales_weight = {scales_zp.first};
std::vector<int32_t> zero_point_weight = {scales_zp.second};
std::vector<float> scales_bias = {scales_input[0] * scales_weight[0]};
std::vector<int32_t> zero_point_bias = {0};
scales_zp = QuantizationParams<u_int8_t>(output_min, output_max);
std::vector<float> scales_output = {scales_zp.first};
std::vector<int32_t> zero_point_output = {scales_zp.second};
tim::vx::Quantization quant_input(tim::vx::QuantType::ASYMMETRIC, 2,
scales_input, zero_point_input);
tim::vx::Quantization quant_weight(tim::vx::QuantType::ASYMMETRIC, 2,
scales_weight, zero_point_weight);
tim::vx::Quantization quant_bias(tim::vx::QuantType::ASYMMETRIC, 2, scales_bias,
zero_point_bias);
tim::vx::Quantization quant_output(tim::vx::QuantType::ASYMMETRIC, 2,
scales_output, zero_point_output);
tim::vx::TensorSpec input_spec(tim::vx::DataType::UINT8, input_shape,
tim::vx::TensorAttribute::INPUT, quant_input);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::UINT8, weight_shape,
tim::vx::TensorAttribute::CONSTANT,
quant_weight);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::INT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT, quant_bias);
tim::vx::TensorSpec output_spec(tim::vx::DataType::UINT8, output_shape,
tim::vx::TensorAttribute::OUTPUT,
quant_output);
// Input data nchw
// min:0 max:255 scale:1 Zp:-128
std::vector<float> input_data_float = {1, 1, 1, 1, 1, 1, 1, 1, 1};
std::vector<uint8_t> input_data =
Quantize<uint8_t>(input_data_float, scales_input[0], zero_point_input[0]);
// weight data iohw
// min:0 max:255 scale:1 Zp:-128
std::vector<float> weight_data_float = {1, 2, 3, 4};
std::vector<uint8_t> weight_data =
Quantize<uint8_t>(weight_data_float, scales_weight[0], zero_point_input[0]);
// bias data
// scale:1 Zp:0
std::vector<float> bias_data_float = {0};
std::vector<int32_t> bias_data =
Quantize<int32_t>(bias_data_float, scales_bias[0], zero_point_bias[0]);
// golden
// min:0 max:255 scale:1 Zp:-128
std::vector<float> golden_float = {4, 7, 3, 6, 10, 4, 2, 3, 1};
std::vector<u_int8_t> golden =
Quantize<uint8_t>(golden_float, scales_output[0], zero_point_output[0]);
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
auto padding = tim::vx::PadType::SAME;
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({2, 2});
int32_t multiplier = weight_shape[2] / input_shape[2];
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
padding, stride, dilation, multiplier);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<uint8_t> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(DepthwiseConv, shape_3_2_2_1_int8_PerTensorTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({3, 2, 2, 1}); //whcn
tim::vx::ShapeType weight_shape({2, 2, 4, 1}); //whoi
tim::vx::ShapeType bias_shape({weight_shape[2]});
tim::vx::ShapeType output_shape(
{2, 1, weight_shape[2], input_shape[3]}); //whcn
float input_min = -63.5, input_max = 64, output_min = -63.5, output_max = 64;
std::pair<float, int32_t> scales_zp;
scales_zp = QuantizationParams<int8_t>(input_min, input_max);
std::vector<float> scales_input = {scales_zp.first};
std::vector<int32_t> zero_point_input = {scales_zp.second};
std::vector<float> scales_weight = {1};
std::vector<int32_t> zero_point_weight = {0};
int32_t sizeofweight = scales_weight.size();
std::vector<float> scales_bias(sizeofweight);
std::vector<int32_t> zero_point_bias(sizeofweight);
for (int i = 0; i < sizeofweight; i++) {
scales_bias[i] = scales_input[0] * scales_weight[i];
zero_point_bias[i] = 0;
}
scales_zp = QuantizationParams<int8_t>(output_min, output_max);
std::vector<float> scales_output = {scales_zp.first};
std::vector<int32_t> zero_point_output = {scales_zp.second};
tim::vx::Quantization quant_input(tim::vx::QuantType::ASYMMETRIC, 2,
scales_input, zero_point_input);
tim::vx::Quantization quant_weight(tim::vx::QuantType::ASYMMETRIC, 2,
scales_weight, zero_point_weight);
tim::vx::Quantization quant_bias(tim::vx::QuantType::ASYMMETRIC, 2, scales_bias,
zero_point_bias);
tim::vx::Quantization quant_output(tim::vx::QuantType::ASYMMETRIC, 2,
scales_output, zero_point_output);
tim::vx::TensorSpec input_spec(tim::vx::DataType::INT8, input_shape,
tim::vx::TensorAttribute::INPUT, quant_input);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::INT8, weight_shape,
tim::vx::TensorAttribute::CONSTANT,
quant_weight);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::INT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT, quant_bias);
tim::vx::TensorSpec output_spec(tim::vx::DataType::INT8, output_shape,
tim::vx::TensorAttribute::OUTPUT,
quant_output);
// Input data nchw
// min:-63.5 max:64 scale:0.5 Zp:-1
std::vector<float> input_data_float = {3, 1, -2, 4, 2, -3,
2, -1, -3, 3, -2, -4};
std::vector<int8_t> input_data =
Quantize<int8_t>(input_data_float, scales_input[0], zero_point_input[0]);
// weight data iohw
std::vector<float> weight_data_float = {1, 3, 7, 3, 2, 4, 8, 4,
3, 5, 5, 1, 4, 6, 6, 2};
std::vector<int8_t> weight_data =
Quantize<int8_t>(weight_data_float, scales_weight[0], zero_point_weight[0]);
// bias data
std::vector<int32_t> bias_data = {6, -4, 8, 12};
// golden
// min:-63.5 max:64 scale:0.5 Zp:-1
std::vector<float> golden_float = {43, 3, 48, -4, 18, -28, 22, -36};
std::vector<int8_t> golden =
Quantize<int8_t>(golden_float, scales_output[0], zero_point_output[0]);
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
auto padding = tim::vx::PadType::VALID;
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({1, 1});
int32_t multiplier = weight_shape[2] / input_shape[2];
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
padding, stride, dilation, multiplier);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<int8_t> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(DepthwiseConv, shape_3_2_2_1_int8_PerAxisTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({3, 2, 2, 1}); //whcn
tim::vx::ShapeType weight_shape({2, 2, 4, 1}); //whoi
tim::vx::ShapeType bias_shape({weight_shape[2]});
tim::vx::ShapeType output_shape(
{2, 1, weight_shape[2], input_shape[3]}); //whcn
float input_min = -63.5, input_max = 64, output_min = -63.5, output_max = 64;
std::pair<float, int32_t> scales_zp;
scales_zp = QuantizationParams<int8_t>(input_min, input_max);
std::vector<float> scales_input = {scales_zp.first};
std::vector<int32_t> zero_point_input = {scales_zp.second};
std::vector<float> scales_weight = {1, 2, 3, 4};
std::vector<int32_t> zero_point_weight = {0, 0, 0, 0};
int32_t sizeofweight = scales_weight.size();
std::vector<float> scales_bias(sizeofweight);
std::vector<int32_t> zero_point_bias(sizeofweight);
for (int i = 0; i < sizeofweight; i++) {
scales_bias[i] = scales_input[0] * scales_weight[i];
zero_point_bias[i] = 0;
}
scales_zp = QuantizationParams<int8_t>(output_min, output_max);
std::vector<float> scales_output = {scales_zp.first};
std::vector<int32_t> zero_point_output = {scales_zp.second};
tim::vx::Quantization quant_input(tim::vx::QuantType::ASYMMETRIC, 2,
scales_input, zero_point_input);
tim::vx::Quantization quant_weight(tim::vx::QuantType::SYMMETRIC_PER_CHANNEL,
2, scales_weight, zero_point_weight);
tim::vx::Quantization quant_bias(tim::vx::QuantType::SYMMETRIC_PER_CHANNEL, 0,
scales_bias, zero_point_bias);
tim::vx::Quantization quant_output(tim::vx::QuantType::ASYMMETRIC, 2,
scales_output, zero_point_output);
tim::vx::TensorSpec input_spec(tim::vx::DataType::INT8, input_shape,
tim::vx::TensorAttribute::INPUT, quant_input);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::INT8, weight_shape,
tim::vx::TensorAttribute::CONSTANT,
quant_weight);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::INT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT, quant_bias);
tim::vx::TensorSpec output_spec(tim::vx::DataType::INT8, output_shape,
tim::vx::TensorAttribute::OUTPUT,
quant_output);
// Input data nchw
// min:-63.5 max:64 scale:0.5 Zp:-1
std::vector<float> input_data_float = {3, 1, -2, 4, 2, -3,
2, -1, -3, 3, -2, -4};
std::vector<int8_t> input_data =
Quantize<int8_t>(input_data_float, scales_input[0], zero_point_input[0]);
// weight data iohw
std::vector<int8_t> weight_data = {1, 3, 7, 3, 1, 2, 4, 2,
1, 2, 2, 0, 1, 2, 2, 1};
// bias data
std::vector<int32_t> bias_data = {6, -2, 2, 3};
// golden
// min:-63.5 max:64 scale:0.5 Zp:-1
std::vector<float> golden_float = {43, 3, 48, -4, 21, -30, 22, -54};
std::vector<int8_t> golden =
Quantize<int8_t>(golden_float, scales_output[0], zero_point_output[0]);
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
auto padding = tim::vx::PadType::VALID;
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({1, 1});
int32_t multiplier = weight_shape[2] / input_shape[2];
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
padding, stride, dilation, multiplier);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<int8_t> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(DepthwiseConv, shape_3_3_8_1_int8_PerChannelValidTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({3, 3, 8, 1}); //whcn
tim::vx::ShapeType weight_shape({3, 3, 8, 1}); //whoi
tim::vx::ShapeType bias_shape({weight_shape[2]});
tim::vx::ShapeType output_shape(
{1, 1, weight_shape[2], input_shape[3]}); //whcn
float input_min = -63.5, input_max = 64, output_min = -63.5, output_max = 64;
std::pair<float, int32_t> scales_zp;
scales_zp = QuantizationParams<int8_t>(input_min, input_max);
std::vector<float> scales_input = {scales_zp.first};
std::vector<int32_t> zero_point_input = {scales_zp.second};
std::vector<float> scales_weight = {0.1, 0.2, 0.3, 0.4, 0.4, 0.3, 0.2, 0.1};
std::vector<int32_t> zero_point_weight = {0, 0, 0, 0, 0, 0, 0, 0};
int32_t sizeofweight = scales_weight.size();
std::vector<float> scales_bias(sizeofweight);
std::vector<int32_t> zero_point_bias(sizeofweight);
for (int i = 0; i < sizeofweight; i++) {
scales_bias[i] = scales_input[0] * scales_weight[i];
zero_point_bias[i] = 0;
}
scales_zp = QuantizationParams<int8_t>(output_min, output_max);
std::vector<float> scales_output = {scales_zp.first};
std::vector<int32_t> zero_point_output = {scales_zp.second};
tim::vx::Quantization quant_input(tim::vx::QuantType::ASYMMETRIC, 2,
scales_input, zero_point_input);
tim::vx::Quantization quant_weight(tim::vx::QuantType::SYMMETRIC_PER_CHANNEL,
2, scales_weight, zero_point_weight);
tim::vx::Quantization quant_bias(tim::vx::QuantType::SYMMETRIC_PER_CHANNEL, 0,
scales_bias, zero_point_bias);
tim::vx::Quantization quant_output(tim::vx::QuantType::ASYMMETRIC, 2,
scales_output, zero_point_output);
tim::vx::TensorSpec input_spec(tim::vx::DataType::INT8, input_shape,
tim::vx::TensorAttribute::INPUT, quant_input);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::INT8, weight_shape,
tim::vx::TensorAttribute::CONSTANT,
quant_weight);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::INT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT, quant_bias);
tim::vx::TensorSpec output_spec(tim::vx::DataType::INT8, output_shape,
tim::vx::TensorAttribute::OUTPUT,
quant_output);
// Input data nchw
// min:-63.5 max:64 scale:0.5 Zp:-1
std::vector<float> input_data_float = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
std::vector<int8_t> input_data =
Quantize<int8_t>(input_data_float, scales_input[0], zero_point_input[0]);
// weight data iohw
std::vector<int8_t> weight_data = {
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
13, 13, 13, 13, 13, 13, 13, 13, 13, 20, 20, 20, 20, 20, 20, 20, 20, 20,
35, 35, 35, 35, 35, 35, 35, 35, 35, 80, 80, 80, 80, 80, 80, 80, 80, 80};
// bias data
std::vector<int32_t> bias_data = {0, 0, 0, 0, 0, 0, 0, 0};
// golden
// min:-63.5 max:64 scale:0.5 Zp:-1
std::vector<float> golden_float = {9, 18, 0, 0, 47, 54, 0, 0};
std::vector<int8_t> golden =
Quantize<int8_t>(golden_float, scales_output[0], zero_point_output[0]);
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
auto padding = tim::vx::PadType::VALID;
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({1, 1});
int32_t multiplier = weight_shape[2] / input_shape[2];
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
padding, stride, dilation, multiplier);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<int8_t> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}
TEST(DepthwiseConv, shape_3_3_8_1_int8_PerChannelSameTest) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();
tim::vx::ShapeType input_shape({3, 3, 8, 1}); //whcn
tim::vx::ShapeType weight_shape({3, 3, 8, 1}); //whoi
tim::vx::ShapeType bias_shape({weight_shape[2]});
tim::vx::ShapeType output_shape(
{3, 3, weight_shape[2], input_shape[3]}); //whcn
float input_min = -63.5, input_max = 64, output_min = -63.5, output_max = 64;
std::pair<float, int32_t> scales_zp;
scales_zp = QuantizationParams<int8_t>(input_min, input_max);
std::vector<float> scales_input = {scales_zp.first};
std::vector<int32_t> zero_point_input = {scales_zp.second};
std::vector<float> scales_weight = {0.1, 0.2, 0.3, 0.4, 0.4, 0.3, 0.2, 0.1};
std::vector<int32_t> zero_point_weight = {0, 0, 0, 0, 0, 0, 0, 0};
int32_t sizeofweight = scales_weight.size();
std::vector<float> scales_bias(sizeofweight);
std::vector<int32_t> zero_point_bias(sizeofweight);
for (int i = 0; i < sizeofweight; i++) {
scales_bias[i] = scales_input[0] * scales_weight[i];
zero_point_bias[i] = 0;
}
scales_zp = QuantizationParams<int8_t>(output_min, output_max);
std::vector<float> scales_output = {scales_zp.first};
std::vector<int32_t> zero_point_output = {scales_zp.second};
tim::vx::Quantization quant_input(tim::vx::QuantType::ASYMMETRIC, 2,
scales_input, zero_point_input);
tim::vx::Quantization quant_weight(tim::vx::QuantType::SYMMETRIC_PER_CHANNEL,
2, scales_weight, zero_point_weight);
tim::vx::Quantization quant_bias(tim::vx::QuantType::SYMMETRIC_PER_CHANNEL, 0,
scales_bias, zero_point_bias);
tim::vx::Quantization quant_output(tim::vx::QuantType::ASYMMETRIC, 2,
scales_output, zero_point_output);
tim::vx::TensorSpec input_spec(tim::vx::DataType::INT8, input_shape,
tim::vx::TensorAttribute::INPUT, quant_input);
tim::vx::TensorSpec weight_spec(tim::vx::DataType::INT8, weight_shape,
tim::vx::TensorAttribute::CONSTANT,
quant_weight);
tim::vx::TensorSpec bias_spec(tim::vx::DataType::INT32, bias_shape,
tim::vx::TensorAttribute::CONSTANT, quant_bias);
tim::vx::TensorSpec output_spec(tim::vx::DataType::INT8, output_shape,
tim::vx::TensorAttribute::OUTPUT,
quant_output);
// Input data nchw
// min:-63.5 max:64 scale:0.5 Zp:-1
std::vector<float> input_data_float = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
std::vector<int8_t> input_data =
Quantize<int8_t>(input_data_float, scales_input[0], zero_point_input[0]);
// weight data iohw
std::vector<int8_t> weight_data = {
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
13, 13, 13, 13, 13, 13, 13, 13, 13, 20, 20, 20, 20, 20, 20, 20, 20, 20,
35, 35, 35, 35, 35, 35, 35, 35, 35, 80, 80, 80, 80, 80, 80, 80, 80, 80};
// bias data
std::vector<int32_t> bias_data = {0, 0, 0, 0, 0, 0, 0, 0};
// golden
// min:-63.5 max:64 scale:0.5 Zp:-1
std::vector<float> golden_float = {
4, 6, 4, 6, 9, 6, 4, 6, 4, 8, 12, 8, 12, 18, 12, 8, 12, 8,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
21, 31, 21, 31, 47, 31, 21, 31, 21, 24, 36, 24, 36, 54, 36, 24, 36, 24,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
std::vector<int8_t> golden =
Quantize<int8_t>(golden_float, scales_output[0], zero_point_output[0]);
auto input_tensor = graph->CreateTensor(input_spec);
auto weight_tensor = graph->CreateTensor(weight_spec, weight_data.data());
auto bias_tensor = graph->CreateTensor(bias_spec, bias_data.data());
auto output_tensor = graph->CreateTensor(output_spec);
auto padding = tim::vx::PadType::SAME;
std::array<uint32_t, 2> stride({1, 1});
std::array<uint32_t, 2> dilation({1, 1});
int32_t multiplier = weight_shape[2] / input_shape[2];
auto conv2d = graph->CreateOperation<tim::vx::ops::Conv2d>(
padding, stride, dilation, multiplier);
(*conv2d)
.BindInput(input_tensor)
.BindInput(weight_tensor)
.BindInput(bias_tensor)
.BindOutput(output_tensor);
EXPECT_TRUE(graph->Compile());
input_tensor->CopyDataToTensor(input_data.data());
EXPECT_TRUE(graph->Run());
uint32_t output_size = 1;
for (auto i : output_tensor->GetShape()) {
output_size *= i;
}
std::vector<int8_t> output(output_size);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_EQ(golden, output);
}