abstractaccelerator/design/lib/beh_lib.sv

479 lines
16 KiB
Systemverilog
Raw Normal View History

2019-06-04 22:57:48 +08:00
// SPDX-License-Identifier: Apache-2.0
// Copyright 2019 Western Digital Corporation or its affiliates.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// all flops call the rvdff flop
module rvdff #( parameter WIDTH=1 )
(
input logic [WIDTH-1:0] din,
2019-08-14 03:48:48 +08:00
input logic clk,
input logic rst_l,
2019-06-04 22:57:48 +08:00
output logic [WIDTH-1:0] dout
);
`ifdef CLOCKGATE
always @(posedge tb_top.clk) begin
#0 $strobe("CG: %0t %m din %x dout %x clk %b width %d",$time,din,dout,clk,WIDTH);
end
`endif
always_ff @(posedge clk or negedge rst_l) begin
if (rst_l == 0)
2019-08-14 03:48:48 +08:00
dout[WIDTH-1:0] <= 0;
2019-06-04 22:57:48 +08:00
else
2019-08-14 03:48:48 +08:00
dout[WIDTH-1:0] <= din[WIDTH-1:0];
2019-06-04 22:57:48 +08:00
end
endmodule
// rvdff with 2:1 input mux to flop din iff sel==1
module rvdffs #( parameter WIDTH=1 )
(
input logic [WIDTH-1:0] din,
input logic en,
2019-08-14 03:48:48 +08:00
input logic clk,
input logic rst_l,
2019-06-04 22:57:48 +08:00
output logic [WIDTH-1:0] dout
);
rvdff #(WIDTH) dffs (.din((en) ? din[WIDTH-1:0] : dout[WIDTH-1:0]), .*);
endmodule
// rvdff with en and clear
module rvdffsc #( parameter WIDTH=1 )
(
input logic [WIDTH-1:0] din,
input logic en,
input logic clear,
2019-08-14 03:48:48 +08:00
input logic clk,
input logic rst_l,
2019-06-04 22:57:48 +08:00
output logic [WIDTH-1:0] dout
);
2019-08-14 03:48:48 +08:00
logic [WIDTH-1:0] din_new;
2019-06-04 22:57:48 +08:00
assign din_new = {WIDTH{~clear}} & (en ? din[WIDTH-1:0] : dout[WIDTH-1:0]);
rvdff #(WIDTH) dffsc (.din(din_new[WIDTH-1:0]), .*);
endmodule
module `TEC_RV_ICG
(
input logic TE, E, CP,
output Q
);
logic en_ff;
logic enable;
assign enable = E | TE;
`ifdef VERILATOR
always @(negedge CP) begin
en_ff <= enable;
end
`else
always @(CP, enable) begin
if(!CP)
en_ff = enable;
end
`endif
assign Q = CP & en_ff;
endmodule
module rvclkhdr
(
input logic en,
input logic clk,
input logic scan_mode,
output logic l1clk
);
2019-08-14 03:48:48 +08:00
logic TE;
2019-06-04 22:57:48 +08:00
assign TE = scan_mode;
`TEC_RV_ICG clkhdr ( .*, .E(en), .CP(clk), .Q(l1clk));
2019-06-04 22:57:48 +08:00
endmodule
module rvoclkhdr
(
input logic en,
input logic clk,
input logic scan_mode,
output logic l1clk
);
2019-08-14 03:48:48 +08:00
logic TE;
assign TE = scan_mode;
`ifdef RV_FPGA_OPTIMIZE
assign l1clk = clk;
`else
`TEC_RV_ICG clkhdr ( .*, .E(en), .CP(clk), .Q(l1clk));
`endif
endmodule
2019-06-04 22:57:48 +08:00
module rvdffe #( parameter WIDTH=1 )
(
input logic [WIDTH-1:0] din,
2019-08-14 03:48:48 +08:00
input logic en,
input logic clk,
input logic rst_l,
2019-06-04 22:57:48 +08:00
input logic scan_mode,
output logic [WIDTH-1:0] dout
);
2019-08-14 03:48:48 +08:00
logic l1clk;
2019-06-04 22:57:48 +08:00
`ifndef PHYSICAL
if (WIDTH >= 8) begin: genblock
`endif
`ifdef RV_FPGA_OPTIMIZE
rvdffs #(WIDTH) dff ( .* );
`else
2019-06-04 22:57:48 +08:00
rvclkhdr clkhdr ( .* );
rvdff #(WIDTH) dff (.*, .clk(l1clk));
`endif
2019-06-04 22:57:48 +08:00
`ifndef PHYSICAL
end
else
$error("%m: rvdffe width must be >= 8");
`endif
2019-06-04 22:57:48 +08:00
endmodule // rvdffe
module rvsyncss #(parameter WIDTH = 251)
(
input logic clk,
input logic rst_l,
input logic [WIDTH-1:0] din,
output logic [WIDTH-1:0] dout
);
2019-08-14 03:48:48 +08:00
logic [WIDTH-1:0] din_ff1;
2019-06-04 22:57:48 +08:00
rvdff #(WIDTH) sync_ff1 (.*, .din (din[WIDTH-1:0]), .dout(din_ff1[WIDTH-1:0]));
rvdff #(WIDTH) sync_ff2 (.*, .din (din_ff1[WIDTH-1:0]), .dout(dout[WIDTH-1:0]));
endmodule // rvsyncss
module rvlsadder
(
input logic [31:0] rs1,
input logic [11:0] offset,
output logic [31:0] dout
);
2019-08-14 03:48:48 +08:00
logic cout;
logic sign;
2019-06-04 22:57:48 +08:00
2019-08-14 03:48:48 +08:00
logic [31:12] rs1_inc;
logic [31:12] rs1_dec;
2019-06-04 22:57:48 +08:00
assign {cout,dout[11:0]} = {1'b0,rs1[11:0]} + {1'b0,offset[11:0]};
assign rs1_inc[31:12] = rs1[31:12] + 1;
assign rs1_dec[31:12] = rs1[31:12] - 1;
assign sign = offset[11];
assign dout[31:12] = ({20{ sign ^~ cout}} & rs1[31:12]) |
2019-08-14 03:48:48 +08:00
({20{ ~sign & cout}} & rs1_inc[31:12]) |
({20{ sign & ~cout}} & rs1_dec[31:12]);
2019-06-04 22:57:48 +08:00
endmodule // rvlsadder
// assume we only maintain pc[31:1] in the pipe
module rvbradder
(
input [31:1] pc,
input [12:1] offset,
output [31:1] dout
);
2019-08-14 03:48:48 +08:00
logic cout;
logic sign;
2019-06-04 22:57:48 +08:00
logic [31:13] pc_inc;
logic [31:13] pc_dec;
assign {cout,dout[12:1]} = {1'b0,pc[12:1]} + {1'b0,offset[12:1]};
assign pc_inc[31:13] = pc[31:13] + 1;
assign pc_dec[31:13] = pc[31:13] - 1;
assign sign = offset[12];
assign dout[31:13] = ({19{ sign ^~ cout}} & pc[31:13]) |
2019-08-14 03:48:48 +08:00
({19{ ~sign & cout}} & pc_inc[31:13]) |
({19{ sign & ~cout}} & pc_dec[31:13]);
2019-06-04 22:57:48 +08:00
endmodule // rvbradder
// 2s complement circuit
module rvtwoscomp #( parameter WIDTH=32 )
(
input logic [WIDTH-1:0] din,
output logic [WIDTH-1:0] dout
);
2019-08-14 03:48:48 +08:00
logic [WIDTH-1:1] dout_temp; // holding for all other bits except for the lsb. LSB is always din
2019-06-04 22:57:48 +08:00
2019-08-14 03:48:48 +08:00
genvar i;
2019-06-04 22:57:48 +08:00
for ( i = 1; i < WIDTH; i++ ) begin : flip_after_first_one
assign dout_temp[i] = (|din[i-1:0]) ? ~din[i] : din[i];
end : flip_after_first_one
assign dout[WIDTH-1:0] = { dout_temp[WIDTH-1:1], din[0] };
endmodule // 2'scomp
// find first
module rvfindfirst1 #( parameter WIDTH=32, SHIFT=$clog2(WIDTH) )
(
input logic [WIDTH-1:0] din,
output logic [SHIFT-1:0] dout
);
2019-08-14 03:48:48 +08:00
logic done;
2019-06-04 22:57:48 +08:00
always_comb begin
dout[SHIFT-1:0] = {SHIFT{1'b0}};
done = 1'b0;
for ( int i = WIDTH-1; i > 0; i-- ) begin : find_first_one
2019-08-14 03:48:48 +08:00
done |= din[i];
dout[SHIFT-1:0] += done ? 1'b0 : 1'b1;
2019-06-04 22:57:48 +08:00
end : find_first_one
end
endmodule // rvfindfirst1
module rvfindfirst1hot #( parameter WIDTH=32 )
(
input logic [WIDTH-1:0] din,
output logic [WIDTH-1:0] dout
);
2019-08-14 03:48:48 +08:00
logic done;
2019-06-04 22:57:48 +08:00
always_comb begin
dout[WIDTH-1:0] = {WIDTH{1'b0}};
done = 1'b0;
for ( int i = 0; i < WIDTH; i++ ) begin : find_first_one
2019-08-14 03:48:48 +08:00
dout[i] = ~done & din[i];
done |= din[i];
2019-06-04 22:57:48 +08:00
end : find_first_one
end
endmodule // rvfindfirst1hot
// mask and match function matches bits after finding the first 0 position
// find first starting from LSB. Skip that location and match the rest of the bits
module rvmaskandmatch #( parameter WIDTH=32 )
(
input logic [WIDTH-1:0] mask, // this will have the mask in the lower bit positions
input logic [WIDTH-1:0] data, // this is what needs to be matched on the upper bits with the mask's upper bits
input logic masken, // when 1 : do mask. 0 : full match
output logic match
);
2019-08-14 03:48:48 +08:00
logic [WIDTH-1:0] matchvec;
logic masken_or_fullmask;
2019-06-04 22:57:48 +08:00
assign masken_or_fullmask = masken & ~(&mask[WIDTH-1:0]);
assign matchvec[0] = masken_or_fullmask | (mask[0] == data[0]);
2019-08-14 03:48:48 +08:00
genvar i;
2019-06-04 22:57:48 +08:00
for ( i = 1; i < WIDTH; i++ ) begin : match_after_first_zero
assign matchvec[i] = (&mask[i-1:0] & masken_or_fullmask) ? 1'b1 : (mask[i] == data[i]);
end : match_after_first_zero
assign match = &matchvec[WIDTH-1:0]; // all bits either matched or were masked off
endmodule // rvmaskandmatch
module rvbtb_tag_hash (
2019-08-14 03:48:48 +08:00
input logic [31:1] pc,
output logic [`RV_BTB_BTAG_SIZE-1:0] hash
);
2019-06-04 22:57:48 +08:00
`ifndef RV_BTB_BTAG_FOLD
assign hash = {(pc[`RV_BTB_ADDR_HI+`RV_BTB_BTAG_SIZE+`RV_BTB_BTAG_SIZE+`RV_BTB_BTAG_SIZE:`RV_BTB_ADDR_HI+`RV_BTB_BTAG_SIZE+`RV_BTB_BTAG_SIZE+1] ^
2019-08-14 03:48:48 +08:00
pc[`RV_BTB_ADDR_HI+`RV_BTB_BTAG_SIZE+`RV_BTB_BTAG_SIZE:`RV_BTB_ADDR_HI+`RV_BTB_BTAG_SIZE+1] ^
pc[`RV_BTB_ADDR_HI+`RV_BTB_BTAG_SIZE:`RV_BTB_ADDR_HI+1])};
2019-06-04 22:57:48 +08:00
`else
assign hash = {(
2019-08-14 03:48:48 +08:00
pc[`RV_BTB_ADDR_HI+`RV_BTB_BTAG_SIZE+`RV_BTB_BTAG_SIZE:`RV_BTB_ADDR_HI+`RV_BTB_BTAG_SIZE+1] ^
pc[`RV_BTB_ADDR_HI+`RV_BTB_BTAG_SIZE:`RV_BTB_ADDR_HI+1])};
2019-06-04 22:57:48 +08:00
`endif
// assign hash = {pc[`RV_BTB_ADDR_HI+1],(pc[`RV_BTB_ADDR_HI+13:`RV_BTB_ADDR_HI+10] ^
2019-08-14 03:48:48 +08:00
// pc[`RV_BTB_ADDR_HI+9:`RV_BTB_ADDR_HI+6] ^
// pc[`RV_BTB_ADDR_HI+5:`RV_BTB_ADDR_HI+2])};
2019-06-04 22:57:48 +08:00
endmodule
module rvbtb_addr_hash (
2019-08-14 03:48:48 +08:00
input logic [31:1] pc,
output logic [`RV_BTB_ADDR_HI:`RV_BTB_ADDR_LO] hash
);
2019-06-04 22:57:48 +08:00
assign hash[`RV_BTB_ADDR_HI:`RV_BTB_ADDR_LO] = pc[`RV_BTB_INDEX1_HI:`RV_BTB_INDEX1_LO] ^
2019-08-14 03:48:48 +08:00
`ifndef RV_BTB_FOLD2_INDEX_HASH
pc[`RV_BTB_INDEX2_HI:`RV_BTB_INDEX2_LO] ^
2019-06-04 22:57:48 +08:00
`endif
2019-08-14 03:48:48 +08:00
pc[`RV_BTB_INDEX3_HI:`RV_BTB_INDEX3_LO];
2019-06-04 22:57:48 +08:00
endmodule
module rvbtb_ghr_hash (
2019-08-14 03:48:48 +08:00
input logic [`RV_BTB_ADDR_HI:`RV_BTB_ADDR_LO] hashin,
input logic [`RV_BHT_GHR_RANGE] ghr,
output logic [`RV_BHT_ADDR_HI:`RV_BHT_ADDR_LO] hash
);
2019-06-04 22:57:48 +08:00
// The hash function is too complex to write in verilog for all cases.
// The config script generates the logic string based on the bp config.
assign hash[`RV_BHT_ADDR_HI:`RV_BHT_ADDR_LO] = `RV_BHT_HASH_STRING;
endmodule
// Check if the S_ADDR <= addr < E_ADDR
module rvrangecheck #(CCM_SADR = 32'h0,
CCM_SIZE = 128) (
input logic [31:0] addr, // Address to be checked for range
output logic in_range, // S_ADDR <= start_addr < E_ADDR
output logic in_region
);
localparam REGION_BITS = 4;
localparam MASK_BITS = 10 + $clog2(CCM_SIZE);
logic [31:0] start_addr;
logic [3:0] region;
assign start_addr[31:0] = CCM_SADR;
assign region[REGION_BITS-1:0] = start_addr[31:(32-REGION_BITS)];
assign in_region = (addr[31:(32-REGION_BITS)] == region[REGION_BITS-1:0]);
if (CCM_SIZE == 48)
assign in_range = (addr[31:MASK_BITS] == start_addr[31:MASK_BITS]) & ~(&addr[MASK_BITS-1 : MASK_BITS-2]);
else
assign in_range = (addr[31:MASK_BITS] == start_addr[31:MASK_BITS]);
endmodule // rvrangechecker
// 16 bit even parity generator
module rveven_paritygen #(WIDTH = 16) (
2019-08-14 03:48:48 +08:00
input logic [WIDTH-1:0] data_in, // Data
output logic parity_out // generated even parity
);
2019-06-04 22:57:48 +08:00
assign parity_out = ^(data_in[WIDTH-1:0]) ;
endmodule // rveven_paritygen
module rveven_paritycheck #(WIDTH = 16) (
2019-08-14 03:48:48 +08:00
input logic [WIDTH-1:0] data_in, // Data
input logic parity_in,
output logic parity_err // Parity error
);
2019-06-04 22:57:48 +08:00
assign parity_err = ^(data_in[WIDTH-1:0]) ^ parity_in ;
endmodule // rveven_paritycheck
module rvecc_encode (
2019-08-14 03:48:48 +08:00
input [31:0] din,
output [6:0] ecc_out
);
2019-06-04 22:57:48 +08:00
logic [5:0] ecc_out_temp;
assign ecc_out_temp[0] = din[0]^din[1]^din[3]^din[4]^din[6]^din[8]^din[10]^din[11]^din[13]^din[15]^din[17]^din[19]^din[21]^din[23]^din[25]^din[26]^din[28]^din[30];
assign ecc_out_temp[1] = din[0]^din[2]^din[3]^din[5]^din[6]^din[9]^din[10]^din[12]^din[13]^din[16]^din[17]^din[20]^din[21]^din[24]^din[25]^din[27]^din[28]^din[31];
assign ecc_out_temp[2] = din[1]^din[2]^din[3]^din[7]^din[8]^din[9]^din[10]^din[14]^din[15]^din[16]^din[17]^din[22]^din[23]^din[24]^din[25]^din[29]^din[30]^din[31];
assign ecc_out_temp[3] = din[4]^din[5]^din[6]^din[7]^din[8]^din[9]^din[10]^din[18]^din[19]^din[20]^din[21]^din[22]^din[23]^din[24]^din[25];
assign ecc_out_temp[4] = din[11]^din[12]^din[13]^din[14]^din[15]^din[16]^din[17]^din[18]^din[19]^din[20]^din[21]^din[22]^din[23]^din[24]^din[25];
assign ecc_out_temp[5] = din[26]^din[27]^din[28]^din[29]^din[30]^din[31];
assign ecc_out[6:0] = {(^din[31:0])^(^ecc_out_temp[5:0]),ecc_out_temp[5:0]};
endmodule // rvecc_encode
module rvecc_decode (
2019-08-14 03:48:48 +08:00
input en,
input [31:0] din,
input [6:0] ecc_in,
2019-06-04 22:57:48 +08:00
input sed_ded, // only do detection and no correction. Used for the I$
2019-08-14 03:48:48 +08:00
output [31:0] dout,
2019-06-04 22:57:48 +08:00
output [6:0] ecc_out,
2019-08-14 03:48:48 +08:00
output single_ecc_error,
output double_ecc_error
2019-06-04 22:57:48 +08:00
2019-08-14 03:48:48 +08:00
);
2019-06-04 22:57:48 +08:00
2019-08-14 03:48:48 +08:00
logic [6:0] ecc_check;
logic [38:0] error_mask;
logic [38:0] din_plus_parity, dout_plus_parity;
2019-06-04 22:57:48 +08:00
// Generate the ecc bits
assign ecc_check[0] = ecc_in[0]^din[0]^din[1]^din[3]^din[4]^din[6]^din[8]^din[10]^din[11]^din[13]^din[15]^din[17]^din[19]^din[21]^din[23]^din[25]^din[26]^din[28]^din[30];
assign ecc_check[1] = ecc_in[1]^din[0]^din[2]^din[3]^din[5]^din[6]^din[9]^din[10]^din[12]^din[13]^din[16]^din[17]^din[20]^din[21]^din[24]^din[25]^din[27]^din[28]^din[31];
assign ecc_check[2] = ecc_in[2]^din[1]^din[2]^din[3]^din[7]^din[8]^din[9]^din[10]^din[14]^din[15]^din[16]^din[17]^din[22]^din[23]^din[24]^din[25]^din[29]^din[30]^din[31];
assign ecc_check[3] = ecc_in[3]^din[4]^din[5]^din[6]^din[7]^din[8]^din[9]^din[10]^din[18]^din[19]^din[20]^din[21]^din[22]^din[23]^din[24]^din[25];
assign ecc_check[4] = ecc_in[4]^din[11]^din[12]^din[13]^din[14]^din[15]^din[16]^din[17]^din[18]^din[19]^din[20]^din[21]^din[22]^din[23]^din[24]^din[25];
assign ecc_check[5] = ecc_in[5]^din[26]^din[27]^din[28]^din[29]^din[30]^din[31];
// This is the parity bit
assign ecc_check[6] = ((^din[31:0])^(^ecc_in[6:0])) & ~sed_ded;
assign single_ecc_error = en & (ecc_check[6:0] != 0) & ecc_check[6]; // this will never be on for sed_ded
assign double_ecc_error = en & (ecc_check[6:0] != 0) & ~ecc_check[6]; // all errors in the sed_ded case will be recorded as DE
// Generate the mask for error correctiong
for (genvar i=1; i<40; i++) begin
assign error_mask[i-1] = (ecc_check[5:0] == i);
end
// Generate the corrected data
assign din_plus_parity[38:0] = {ecc_in[6], din[31:26], ecc_in[5], din[25:11], ecc_in[4], din[10:4], ecc_in[3], din[3:1], ecc_in[2], din[0], ecc_in[1:0]};
assign dout_plus_parity[38:0] = single_ecc_error ? (error_mask[38:0] ^ din_plus_parity[38:0]) : din_plus_parity[38:0];
assign dout[31:0] = {dout_plus_parity[37:32], dout_plus_parity[30:16], dout_plus_parity[14:8], dout_plus_parity[6:4], dout_plus_parity[2]};
assign ecc_out[6:0] = {(dout_plus_parity[38] ^ (ecc_check[6:0] == 7'b1000000)), dout_plus_parity[31], dout_plus_parity[15], dout_plus_parity[7], dout_plus_parity[3], dout_plus_parity[1:0]};
endmodule // rvecc_decode