Commit Graph

108 Commits

Author SHA1 Message Date
Alexandre Eichenberger f5bed72e13
implement shape inference for concat (#74)
* implement shape inference for concat

* better checking of axis being concatenated: constant values only
2020-04-07 16:13:41 -04:00
Gheorghe-Teodor Bercea f16e79d744
Emit constant tensors as global constants (#66)
* Reorganize main function.

* Follow review comments.

* Emit constants are globals in Krnl and LLVM dialects.

* Enable unique constant variable names.

* Emit alloca for local array. Add tests.

* Comment clean-up.

* Simplify MemRef construction.

* Fix output type.
2020-04-01 13:51:06 -04:00
Alexandre Eichenberger 844dcd8b1f
Name change for tests, to be check-onnx-(lit | backend) (#62) 2020-03-31 10:06:14 -04:00
Alexandre Eichenberger 653fa69102
Unify Conv implementation (#54)
* fixed readme for new git repo

* conv with bias as an optional input
2020-03-26 11:03:19 -04:00
Tian Jin 549af8f0b2
Support attribute promotion. (#34)
* Support attribute promotion.

* Simplify op interface name.

* 1. Add more comments to Attribute Promotion Pass.
2. Move Promotable Const Operand Interface to src/interface, and link against it.

* Complete NFC change onnx -> onnx-mlir.

* Move attribute_promotion pass to src/transform.

* Nit: reword comment.

* Support Attribute Promotion in gen_doc.py.

* Add test.

* Update ONNX doc.

* Add negative test.

* Rename onnxop.inc -> onnx_ops.td.inc.

* Include onnx_ops.td.inc.

* Nit: better comments.

* Prettify CMake.

* Remove original attribute_promotion code, improve comments.

* Append '_op_interface' to op interface decl/defs.

* Namespace cmake targets using onnx_mlir_ prefix.

* Use updated header name.

* Use new body file name.

* Fix dependency.

* Use new CMake target name.

* Make attribute promotion self-contained by removing redundant constant operaions inside the pass execution.

* Remove canonicalization pass.

* Increase comments.

* Use stricter checks.

* Add one more test case.

* Remove %arg1 as it's never used.
2020-03-19 15:03:37 +08:00
Tung D. Le 2814ea3898
Support dilations and enable the remaining e2e tests for MaxPoolSingleOut (#31)
* Support dilations and enable e2e tests

* Fix allocating memory for dynamic shape

* Edit comments

* Do dilation by computing an offset from kernel index

* Correct dilation formula, add an example of out-of-bound, and add a test for dilation

Co-authored-by: Gheorghe-Teodor Bercea <gt.bercea@gmail.com>
2020-03-18 09:55:50 -04:00
Tung D. Le 4763e8a8bc
Lower ONNXAbsOp to Krnl dialect and enable e2e tests for ONNXReduceL1 (#18)
Co-authored-by: Gheorghe-Teodor Bercea <gt.bercea@gmail.com>
2020-03-17 11:12:45 -04:00
Gheorghe-Teodor Bercea 1622b9f161
[NFC] Change ONNF based names to ONNX-MLIR (#32)
* Rename onnf to onnx-mlir.

* Change workspace name.
2020-03-17 09:16:33 -04:00
Tung D. Le d86591d61a
Import all initialized tensors as dense constants (#30)
* Import initialized tensor as dense attribute

* Import all initialize tensors as dense constants

* Remove unintentional code

* Fix value attribute format in shape inference tests of reshape

* Readd rank check for reshape's shape inference

* Remove a redundant variable

Co-authored-by: Gheorghe-Teodor Bercea <gt.bercea@gmail.com>
2020-03-16 11:17:28 -04:00
Gheorghe-Teodor Bercea c46880d5c6
Fix reshape output shape inference when a single dynamic shape is given (#22)
* Fix reshape when a dynamic shape is given.

* Fix default attributes for ConvNoBias.

* Fix comment.

* Resolve comment.

* Improve checks.

* Handle zero dim case.

* Add helper to fetch constants. Add test for dynamic reshape.

* Add test for zero.

* Use shortcut method for size.
2020-03-13 17:18:46 -04:00
chentong319 6137fc7c17
Fix issues #15 and #16 (#29)
* fix issue #15 and #16

* fix format

Co-authored-by: Gheorghe-Teodor Bercea <gt.bercea@gmail.com>
2020-03-13 10:19:27 -04:00
Tung D. Le 362491553c
Shape inference for ONNXAveragePool (#21)
* Shape inference for ONNXAveragePool

* Edit comments and puts helper function on top of the file

* Fix template
2020-03-13 09:59:16 -04:00
Tung D. Le a65820940c
Lower ConstantOp (#28)
* Lower ConstantOp

* Refactor the code

* Edit error messages

* Check whether attribute is sparse or dense during shape inference
2020-03-12 10:58:42 -04:00
Tung D. Le 162ac1bc32
Pad value for MaxPool must be negative infinity instead of zero (#20)
Co-authored-by: Alexandre Eichenberger <alexe@us.ibm.com>
2020-03-12 09:30:02 -04:00
Alexandre Eichenberger 811b63e031
Inter common pad (#26)
* common pad handling in shape inference for conv and maxpool

* common pads

Co-authored-by: Gheorghe-Teodor Bercea <gt.bercea@gmail.com>
2020-03-11 18:36:02 -04:00
chentong319 391f565a66
Lower constant padding operation to KRNL dialect (#27) 2020-03-11 16:54:07 -04:00
Gheorghe-Teodor Bercea e8a0b47e10
Fix case for upper and lower padding when strides are present. (#11)
* Fix case for upper and lower padding when strides are present.

* Address comments.

* Code clean-up.

* Fix tests.
2020-03-10 16:58:05 -04:00
Tung D. Le 1882059ac9
Support Pads for MaxPoolSingleOut (#14)
* Support Pads for MaxPoolSingleOut

* Regenerate onnx.md to include the new op

* Edit comments

* Undo redundant parts that were unintentionally changed

* Move declarative rewriting rules into canonicalize to avoid creating a new op

* Reformat the rewriting rule pattern of MaxPoolSingleOut

* Put ONNXPadConstantValuePadOp's build method into a .cpp file instead of a tablegen file

* Use the same helper function as the one in inferShape for the ONNXPadConstantValuePadOp's build method

* Change function names and fix padding for the spatial dimensions

* Call shape-inference again after canonicalization to infer shape for newly added ops during canonicalization.

* Fix typos
2020-03-09 20:15:58 -04:00
Gheorghe-Teodor Bercea e4c23da4fd
Lower MaxPoolSingleOutOp to Krnl dialect (#1)
* Lower MaxPoolSingleOutOp to Krnl dialect

* Edit comments

* Update changes according to the new folder structure

* Add MLIR tests

* Support ceil_mode

* Merge the first two krnl loops into one krnl loop; remove attribute checks

* Dynamically allocate memory for the result if the result has unknown dimensions

Co-authored-by: Gheorghe-Teodor Bercea <gt.bercea@gmail.com>
2020-03-04 14:27:21 -05:00
Tung D. Le e97df0b343
Add a pass to decompose ONNX operations (#9) 2020-03-04 10:53:59 -05:00
Tung D. Le 5357fc1421
Use SqrtOp in Standard dialect (#108)
Co-authored-by: Gheorghe-Teodor Bercea <gt.bercea@gmail.com>
2020-02-26 12:03:24 -05:00
Tung D. Le 0c4a010283
Remove rank constraints in gemm fusion (#101)
* Remove rank constraints in gemm fusion

* Add an MLIR test

Co-authored-by: Tian Jin <tjingrant@gmail.com>
Co-authored-by: Gheorghe-Teodor Bercea <gt.bercea@gmail.com>
2020-02-26 11:40:52 -05:00
chentong 4edc97f3de Merge branch 'shapeinference-pad' of github.com:chentong319/ONNF into shapeinference-pad 2020-02-25 17:46:44 -05:00
chentong 4079ee1f26 Merge remote-tracking branch 'upstream/master' into shapeinference-pad 2020-02-25 15:54:18 -05:00
Alexandre Eichenberger 3b1c29c078
Using attribute setters for maxpool (#105)
* using attribute setters for maxpool

* fix typos, added handling of storage order, simplified code
2020-02-25 14:33:48 -05:00
Gheorghe-Teodor Bercea 907104d7e8
Merge branch 'master' into shapeinference-pad 2020-02-25 11:14:28 -05:00
Tung D. Le a720f9a7b2
Remove special GemmNoBias since we can handle it using NoneType bias (#100)
* Remove special GemmNoBias since we can handle it using NoneType bias

* Remove GemmNoBias from onnx.md

Co-authored-by: Tian Jin <tjingrant@gmail.com>
2020-02-25 13:20:43 +08:00
Gheorghe-Teodor Bercea d4f8fef947
Merge branch 'master' into shapeinference-pad 2020-02-24 16:13:21 -05:00
Tian Jin 9c398c0121
Support Optional Inputs (#94)
* 1. Combine variadicIn/Out with expectedNumOperands/Results to simplify import function arguments.
2. Generic improvements to code readability in gen_doc.py.

* Update ONNX Dialect doc.

* Remove redundant code in ImportNode.

* Prettify op_build_table.inc.

* 1. Remove irrelevant code in gen_doc.py

* Refactor code to be more readable.

* Further refactoring for readability improvements.

* Allow gemm to have an optional operand (bias term), and include an example of declarative optimization pattern targeting gemm with bias term ommitted.

* Make shape inference/lowering of gemm op compatible with optional operand declaration.

* Apply canonicalization again after lowering from onnx -> std dialects.

* Make hasBias compatible with the situation of GemmNoBias op.

* Update doc.

* Add a canonicalization test.

* Remove special handler for importing Gemm op, as it's redundant now.
2020-02-24 23:46:48 +08:00
chentong 2281cc060f Merge branch 'master' of github.com:clang-ykt/ONNF into shapeinference-pad
Conflicts:
	src/pass/shape_inference_pass.cpp
2020-02-21 09:30:40 -05:00
Tung D. Le aea6479ad3
Lower BatchNormalization (test mode) to Krnl dialect (#70)
* Add ONNXBatchNormalizationTestModeOp and its shape inference

* Lower batchnormalization test mode

* re-use scale, bias, mean, and variance

* Add MLIR tests

* Add e2e tests

* fix typos

* Fix a bug in MLIR tests

* Change type from int to int64_t for indices

* Uncomment e2e tests due to segmentation fault

* Uncomment e2e tests due to segmentation fault

* Revise the code

* [Tian] Fix segmentation fault in e2e tests

* Re-generate onnx.md to include BatchNormalizationTestModeOp

* Reverse an unintentional change

* Fix some typos in comments

* Use convertToMemRefType from the master branch

Co-authored-by: Gheorghe-Teodor Bercea <gt.bercea@gmail.com>
2020-02-20 11:45:40 -05:00
Tung D. Le f1d20e368f
Add support of GemmNoBias (#91)
* Add support of GemmNoBias

* Fix a wrong indentation
2020-02-20 10:55:24 -05:00
Gheorghe-Teodor Bercea b28c6906b4
Fix building ONNF with latest LLVM/MLIR (#89)
* Fix build and link errors.

* Fix end to end tests.

* Fix indentation.

* Fix type conversion.

* Use newest LLVM version.

* Use newest LLVM version.
2020-02-19 18:15:02 -05:00
chentong c11f97f1b5 fix test case for changes in Op definition 2020-02-17 09:07:58 -05:00
chentong ec43fadc3b Merge remote-tracking branch 'upstream/master' into shapeinference-pad 2020-02-17 08:27:43 -05:00
Gheorghe-Teodor Bercea 3c505ae31d
Split convolution into explicit padding and unpaded convolution. (#82)
* Split convolution into explicit padding and unpaded convolution.

* Refactor code. Add test.
2020-02-14 16:06:38 -05:00
chentong bbdf4e3b4d Merge remote-tracking branch 'upstream/master' into shapeinference-pad
Conflicts:
	test/mlir/onnx/onnx_shape_inference.mlir
2020-02-14 15:35:47 -05:00
Gheorghe-Teodor Bercea 17d84901b7
Allow 1-D convolutions. (#86)
* Fix check.

* Fix comment.
2020-02-14 10:54:08 -05:00
Tung D. Le b521719587
Lower Matmul operation to Krnl dialect (#57)
* Allocate memory for matmul's result

* Group cases

* Add support of N-D x N-D, N>=2

* Revise createIterateOperandPack

* Add 1-D x 1-D

* Add 1-D x N-D

* Add MLIR tests

* Change variable names

* Change type from int to int64_t for indices

* Change variable names

* Change int64_t back to int

* Change int64_t back to int

* Change int64_t back to int

* Use decltype

Co-authored-by: Gheorghe-Teodor Bercea <gt.bercea@gmail.com>
Co-authored-by: Tian Jin <tjingrant@gmail.com>
2020-02-14 10:43:17 -05:00
chentong c3041bfb43 shape inference for pad with constant pads 2020-02-13 19:56:05 -05:00
Tian Jin 937bbec265
Fix scalar entry point parameter lowering issue. (#78)
* Fix scalar entry point parameter lowering issue.

* Enable scalar bias test.

* Nit. Improve comments and remove debug code.

* Make helper function static, move to upfront position.

* Move helper function to top of the file.

Co-authored-by: Gheorghe-Teodor Bercea <gt.bercea@gmail.com>
2020-02-13 13:50:05 +08:00
Tung D. Le e5677bba1f
Add e2e tests related to Reduction Ops (#79) 2020-02-12 16:40:32 +08:00
chentong319 49dae74eab
Create constant pad (#75)
* handle pad op which does not have the optional third argment

* rewrite PadConstantValue with constant pad into PadConstantValuePad

* add test for PadConstantValuePad

* update onnx.md
2020-02-11 15:32:01 -05:00
Gheorghe-Teodor Bercea 094be4f37a
Add support for strides when emitting convolution loop nest. (#76)
* Add support for strides when emitting convolution loop nest.

* Only emit stride multiplication if strides is greater than one.

* Add test.
2020-02-11 11:53:13 -05:00
Tung D. Le adad9e24bd
Add support of negative dimensions (#66)
Co-authored-by: Gheorghe-Teodor Bercea <gt.bercea@gmail.com>
2020-02-11 10:37:47 -05:00
Tung D. Le 2c7046ff5f
Lowering ReductionMax, ReductionMin, ReductionProd and ReductionSum (#31)
* Shape inference for reduction

* Lower ReduceSum

* Support list-like attributes

* Add ReduceMax, ReduceMin, ReduceProd

* Add tests

* Emit errors for unsupported types

* Typos

* Add backend test

* Fix axis computation

* Update the use of attributes

* Use SmallVector

* Address stylistic comments

* Change type from int to int64_t for indices

* Change type from int to int64_t for indices
2020-02-10 21:38:19 +08:00
Gheorghe-Teodor Bercea 0272451521
Lower convolution to KRNL dialect. (#65)
* Ensure data shape is at least 4.

* First version of convolution.

* Simplify code for KRNL lowering.

* Add test without padding or strides.

* Refactor code for lowering frontend operations to KRNL dialect.

* Add test for conv with no bias and no padding.

* Add test with group greater than one.

* Address comment.
2020-02-07 16:51:32 -05:00
Tung D. Le 0564c0eaef
Add constraints for matmul-add fusion (#67)
Co-authored-by: Gheorghe-Teodor Bercea <gt.bercea@gmail.com>
2020-02-07 13:51:44 -05:00
Haruki Imai 477227a0ec
Added lowering of SignOp (#21)
* Support lowering of SignOp

* Fixed test code for signop of integer input

* Inserted Sigh and Reciprocal in SharingWork.md (Reciprocal is for past commit 7e3f96e)

* Added test for Sign Op

* Fixed minus_one -> minusOne

* Fixed test for signop
2020-02-04 22:27:17 +08:00
Tung D. Le 2b56c09454
Rewrite ReduceL1, ReduceL2, ReduceLogSum, ReduceLogSumExp, ReduceSumSquare in the ONNX dialect (#38)
* Rewrite ReduceSumSquare

* Edit gen_doc.py

* Revise the code

* Do shape inference after canonicalization so that there is no need to implement shape inference of rewritten ops

* Rewrite ReduceL2

* Add onnx_rewrite.cpp for all rewriting for ONNX ops

* Rewrite ReduceL1, ReduceLogSum, ReduceLogSumExp

* Edit comments

* Change the use of -> to .

* Checkout gen_doc.py from the master branch

* Use emplace_back instead of push_back

* Revise the code

* Edit comments

Co-authored-by: Tian Jin <tjingrant@gmail.com>
2020-01-31 19:00:39 +08:00